Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Small Spacecraft

2015

Power and Energy

Articles 1 - 2 of 2

Full-Text Articles in Aerospace Engineering

Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Apr 2015

Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative aims to create an Open Prototype for Educational Nanosats (OPEN) framework (see [1]) for a complete 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a total parts cost of less than $5,000 [2]. In order to supply all spacecraft subsystems with power, an electrical power system (EPS) has been implemented. The EPS generates power using multiple solar panels, stores it in batteries and regulates it to provide continuous levels of power to all of the subsystems of the spacecraft. The EPS has a crucial role in the spacecraft …


Electrical Power System For An Open Hardware Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Mar 2015

Electrical Power System For An Open Hardware Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter program is developing a complete set of CubeSat hardware and software to facilitate the development of a 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a parts cost of less than $5,000. This poster covers the electrical power system (EPS) for that spacecraft. The EPS is an assemblage of components that supplies all spacecraft subsystems with power, while performing health assessment of the battery and electrical buses. The EPS has a crucial role in the spacecraft and thus has to be developed and tested with extreme care.

The EPS generates power using …