Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerospace Engineering

The Design And Validation Of A Uav Propeller Intended For Extremely Low Reynolds Number Environments, Benjamin Hebert Dec 2020

The Design And Validation Of A Uav Propeller Intended For Extremely Low Reynolds Number Environments, Benjamin Hebert

Electronic Theses and Dissertations

Mars exploration and UAV development have both advanced significantly over the past century, and are now being considered in tandem. Currently needed are UAV propellers that can operate in the Martian atmosphere. Flow will be in the range of Re < 20,000, creating extreme conditions not typically examined. A Blade Element Momentum Theory (BEMT) algorithm is developed using a variety of corrections designed specifically for low Reynolds number and rotational flows. Due to both the simplicity of the basic BEMT formulation, corrections are easy to put in place and often necessary to achieve accurate estimates. Aerodynamic coefficients are determined from XFOIL code, and have questionable accuracy in this regime. To account for this, a correction model is developed by comparing XFOIL results to experimental results of airfoils at low Re. This is all tested against a previous low Re propeller experiment. The results of this comparison are used to adjust the values in the correction, to produce more accurate results for theoretical design.

From here, a design philosophy for the propeller is developed using established methods and previous experimental data. High thrust is prioritized, with efficiency being a secondary concern. A hard mach limit of 0.7 is set to avoid major drag penalties, limiting the usable ranges of RPM and radius. Airfoil designs are then examined, based on previous designs, theoretical intuition, and …


Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet May 2020

Uav 6dof Simulation And Kalman Filter For Localizing Radioactive Sources, John G. Goulet

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) expand the available mission-space for a wide range of budgets. Using MATLAB, this project has developed a six degree of freedom (6DOF) simulation of UAV flight, an Extended Kalman Filter (EKF), and an algorithm for localizing radioactive sources using low-cost hardware. The EKF uses simulated low-cost instruments in an effort to estimate the UAV state throughout simulated flight.

The 6DOF simulates aerodynamics, physics, and controls throughout the flight and provides outputs for each time step. Additionally, the 6DOF simulation offers the ability to control UAV flight via preset waypoints or in realtime via keyboard input.

Using …


Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett Aug 2017

Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett

Electronic Theses and Dissertations

As Unmanned Aerial Vehicle (UAV), or “drone” applications expand, new methods for sensing, navigating and avoiding obstacles need to be developed. The project applies an Extended Kalman Filter (EKF) to a simulated quadcopter vehicle though Matlab in order to estimate not only the vehicle state but the world state around the vehicle. The EKF integrates multiple sensor readings from range sensors, IMU sensors, and radiation sensors and combines this information to optimize state estimates. The result is an estimated world map to be used in vehicle navigation and obstacle avoidance.

The simulation handles the physics behind the vehicle flight. As …


System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha Jan 2017

System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha

Electronic Theses and Dissertations

The advancement in automation and sensory systems in recent years has led to an increase the demand of UAV missions. Due to this increase in demand, the research community has gained interest in investigating UAV performance enhancing systems. Circulation Control (CC), which is an active control flow method used to enhance UAV lift, is a performance enhancing system currently studied. In prior research, experimental studies have shown that Circulation Control wings (CCW) implemented on class-I UAVs can reduce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload capabilities through lift enhancement. Increasing aircraft payload capabilities causes …


Effect Of Operator Control Configuration On Unmanned Aerial System Trainability, John Neumann Jan 2006

Effect Of Operator Control Configuration On Unmanned Aerial System Trainability, John Neumann

Electronic Theses and Dissertations

Unmanned aerial systems (UAS) carry no pilot on board, yet they still require live operators to handle critical functions such as mission planning and execution. Humans also interpret the sensor information provided by these platforms. This applies to all classes of unmanned aerial vehicles (UAV's), including the smaller portable systems used for gathering real-time reconnaissance during military operations in urban terrain. The need to quickly and reliably train soldiers to control small UAS operations demands that the human-system interface be intuitive and easy to master. In this study, participants completed a series of tests of spatial ability and were then …