Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Aerospace Engineering

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade Jan 2023

A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade

Theses and Dissertations--Mechanical Engineering

Oxyacetylene torches are used in the aerospace industry and research to test thermal protection system materials (TPS) due to their high flame temperatures and high heat flux capabilities. The purpose of this work is to determine a combustion model to accurately simulate the high temperature flow of an oxyacetylene torch. The flow conditions around a sample material can then be used as boundary conditions when modeling TPS material response. Two separate combustion models with equilibrium chemistry were investigated using ANSYS Fluent™; the Eddy-Dissipation Model, and the Partially Premixed model.The results of this study are compared to existing experiments for validation.


Disk Engine With Circumferential Swirl Radial Combustor, Brian Bohan, Marc Polanka, Bennett Staton Aug 2022

Disk Engine With Circumferential Swirl Radial Combustor, Brian Bohan, Marc Polanka, Bennett Staton

AFIT Patents

A disk engine and system configured to provide high power at a reduced axial length is disclosed herein. The disk engine includes a radial compressor, a compressor discharge manifold positioned circumferentially about compressor, a combustion chamber positioned within the discharge manifold and a radial turbine positioned radially inward of the combustion chamber.


Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii Jan 2022

Investigations Of The Low Temperature Combustion Regions And Emissions Characteristics Of Aerospace F24 In A Constant Volume Combustion Chamber And A Common Rail Direct Injection Ci Engine, Richard C. Smith Iii

Electronic Theses and Dissertations

A study was conducted to investigate the low temperature combustion (LTC) regions of aerospace F24 and ULSD in the static setting of a CVCC and the dynamic setting of a CRDI research engine. This research is conducted to reduce in-cylinder emissions by understanding and implementing a technique to achieve an extended LTC. Emissions data for this study were collected during the operation of the CRDI research engine with a MKS 2030 FTIR and an AVL Microsoot 483. The parameters researched within the static setting of the CVCC included the determinations of the cool flames and NTC regions within the LTHR …


Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan Jan 2022

Cfd And Heat Transfer Analysis Of Rocket Cooling Techniques On An Aerospike Nozzle, Geoffrey Sullivan

Electronic Theses and Dissertations

In recent years the development of rocket engines has been mainly focused on improving the engine cycle and creating new fuels. Rocket nozzle design has not been changed since the late 1960s. Recent needs for reliable and reusable rockets, as well as advancements in additive manufacturing, have brought new interest into the aerospike nozzle concept. This nozzle is a type of altitude adjusting nozzle that is up to 90% more efficient than bell nozzles at low altitudes and spends up to 30% less fuel. Since the nozzle body is submerged in the hot exhaust gasses it is difficult to keep …


Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny Mar 2020

Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny

Theses and Dissertations

Ultra Compact Combustors are a novel approach to modern gas turbine combustor designs that look to reduce the overall combustor length and weight. A previous study integrated an Ultra Compact Combustor into a JetCat P90 RXi turbine engine and achieved self-sustained operation with a length savings of 33% relative to the stock combustor. However, that combustor could not operate across the full stock engine performance range due to flameout at increased mass ow rates as reactions were pushed out of the primary zone. To ensure reactions stayed in the primary zone, a new design with a larger combustor volume was …


Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan Mar 2020

Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan

Theses and Dissertations

Radial Rotating Detonation Engines (RRDE) have provided an opportunity for use of a pressure-gain combustor in a more compact form compared to an axial RDE. A successfully tested RRDE has operated over a wide range of test conditions and produced detonation modes with one, two, and three waves. The presence of multiple waves located the detonation waves to the outer radius, while one wave modes operated closer to the inner radius. Locating the detonation wave closer to the inner diameter resulted in less time for combustion prior to the radial turbine. Subsequently, this tended to decrease efficiency. To attempt to …


Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller Mar 2019

Flow Behavior In Radial Rotating Detonation Engines, Scott A. Boller

Theses and Dissertations

Recent progress has been made in demonstrating Radial Rotating Detonation Engine (RRDE) technology for use in a compact Auxiliary Power Unit with a rapid response time. Investigation of RRDEs also suggests an increase in stable operating range, which is hypothesized to be due to the additional degree of freedom in the radial direction which the detonation wave can propagate. This investigation seeks to determine if the detonation wave is in fact changing its radial location. High speed photography was used to capture chemiluminescence of the detonation wave within the channel to examine its radial location, which was found to vary …


High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao Aug 2015

High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao

The Summer Undergraduate Research Fellowship (SURF) Symposium

There are many incentives to increase the fuel efficiency of combustion processes. This paper looks at two available options to achieve this goal. The former aims to develop an experimental method that can analyze combustion at extremely high pressures to improve the understanding of high pressure H2/air combustion. Experimental data has been lacking a suitable combustion diagnostic to visualize high pressure combustion processes, making it difficult to improve the process. Improvement of x-ray diffraction tomography in a windowless combustor makes it possible to see flame propagation at high pressure. The procedure and chamber are still in the design phase, yet …


Numerical Study Of The Performance Of A Model Scramjet Engine, Ayad Alhumadi Apr 2012

Numerical Study Of The Performance Of A Model Scramjet Engine, Ayad Alhumadi

Mechanical & Aerospace Engineering Theses & Dissertations

A computational parametric investigation was conducted to study the effect of variations to several geometric parameters on the performance of a two-dimensional model scramjet engine (square cross section area for 3-D model). Geometric parameters included backstep location, height, and angle and fuel injector angle, diameter, and location. Two- and three-dimensional geometries have been studied, using a finite-volume computational fluid dynamics (CFD) code (FLUENT) with structured grids with sizes between 50,000 and 90,000 cells for the two-dimensional geometry and with structured hexahedral grid sizes between 650,000 and 949,725 cells for the three-dimensional geometry. Otherwise, identical values of program inputs were utilized …


Validation Of The Afit Small Scale Combustion Facility And Oh Laser-Induced Fluorescence Of An Atmospheric Laminar Premiext Ed Flame, Stephen J. Koether Sep 2007

Validation Of The Afit Small Scale Combustion Facility And Oh Laser-Induced Fluorescence Of An Atmospheric Laminar Premiext Ed Flame, Stephen J. Koether

Theses and Dissertations

Construction in the AFIT combustion facility is complete and the objective of this report is to explain the steps taken to make the laboratory operational. The infinite radius Ultra-Compact Combustor (UCC) sectional model has been delivered and is fully installed with all fuel, air and instrument lines. Every major system in the lab has been tested and is functioning properly. Laboratory operating procedure has been established to ensure both safety and continuity in experimental results. Finally, the lab has been certified through official safety channels and combustion experiments are underway. The unique capability of the AFIT combustion laboratory is the …


Design, Construction, And Validation Of The Afit Small Scale Combustion Facility And Section Model Of The Ultra-Compact Combustor, Wesley S. Anderson Mar 2007

Design, Construction, And Validation Of The Afit Small Scale Combustion Facility And Section Model Of The Ultra-Compact Combustor, Wesley S. Anderson

Theses and Dissertations

The AFIT small-scale combustion facility is complete and its first experiment designed and built. Beginning with the partially built facility, detailed designs have been developed to complete the laboratory in order to run small-scale combustion experiments at atmospheric pressure. A sectional model of the Ultra-Compact Combustor has also been designed and built. Although the lab's specific design intent was to study the UCC's cavity-vane interaction, facility flexibility has also been maintained for future work. The design enabled the completion of liquid fuel and air delivery systems, power and control systems, and test equipment. The design includes failsafe operation, remote control, …


Performance Measurements Of Direct Air Injection In A Cavity-Based Flameholder For A Supersonic Combustor, Scott G. Edens Dec 2005

Performance Measurements Of Direct Air Injection In A Cavity-Based Flameholder For A Supersonic Combustor, Scott G. Edens

Theses and Dissertations

For several years the Air Force Research Lab Propulsion Directorate has been studying the difficulties in fueling supersonic combustion ramjet engines with hydrocarbon based fuels. Recent investigations have focused on the use of direct air injection into a directly-fueled cavity-based flameholder. Direct air injection has been shown qualitatively to be a valuable tool for improving cavity combustion. Little quantitative data is available that characterizes the performance of cavity-based flameholders. The objective of this research was to quantitatively determine the specific advantages and disadvantages of the direct air injection scheme. This was accomplished via intrusive probing into a supersonic free stream …


Supersonic Combustion And Mixing Characteristics Of Hydrocarbon Fuels In Screamjet Engines, Ahmed A. Taha Jan 2002

Supersonic Combustion And Mixing Characteristics Of Hydrocarbon Fuels In Screamjet Engines, Ahmed A. Taha

Mechanical & Aerospace Engineering Theses & Dissertations

The combustion characteristics of gaseous propane in supersonic airflow using the rearward-facing step that is swept inward from both end sides is studied. The effect of sweeping the step on the flow field features of propane combustion is investigated.

The study of the supersonic combustion of ethylene is carried out using different combustor configurations, different main fuel equivalence ratios, and different pilot fuel equivalence ratios.

The swept step shows the ability to hold the propane flame in the supersonic air stream without extinction. It was found that the side sweeping of the combustor exhibits the high temperature and combustion products …


Studies On Nonequilibrium Phenomena In Supersonic Chemically Reacting Flows, Rajnish Chandrasekhar Jul 1993

Studies On Nonequilibrium Phenomena In Supersonic Chemically Reacting Flows, Rajnish Chandrasekhar

Mechanical & Aerospace Engineering Theses & Dissertations

This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved.

For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO$\sb2$ and NO species, and that this can have a noticeable influence on …