Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Aerospace Engineering

A Real-Time Algorithm To Achieve Precise Coordinated Arrival Times In A Time-Variant Environment, Shawn S. Stephens Sep 2021

A Real-Time Algorithm To Achieve Precise Coordinated Arrival Times In A Time-Variant Environment, Shawn S. Stephens

Theses and Dissertations

The coordinated arrival time problem seeks to control a vehicle's trajectory to achieve some pre-defined final state at a desired arrival time. The persistent monitoring problem is a type of coordinated arrival problem where a stationary or moving ground target must be constantly observed by a group of aircraft. This research simplifies the problem to overfly the target at specific time intervals relative to the other aircraft in the group while increasing the difficulty of the problem by considering aircraft traveling at vastly different airspeeds. The result of this research is a real time guidance algorithm which accurately guides a …


Exact And Approximate Relaxation Techniques For Computational Guidance, Sheril Avikkal Kunhippurayil Aug 2021

Exact And Approximate Relaxation Techniques For Computational Guidance, Sheril Avikkal Kunhippurayil

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The focus of this dissertation is in the development and application of relaxation techniques that enable efficient and real-time solution of complex computational guidance problems. Relaxations transform a non-convex constraint into a convex constraint and provides proof that the optimal solutions to the relaxed problem are optimal for the original problem. Unique contributions of this work include: 1) a relaxation technique for solving fixed final time problems between fixed points, 2) a performance analysis on the application of computational guidance for the Mars Ascent Vehicle, and 3) establishment of sufficient conditions for non-singularity of optimal control for problems on a …


Autonomous Mission Planning For Spacecraft Rendezvous And Proximity Operations, Julia C. Bell Jun 2021

Autonomous Mission Planning For Spacecraft Rendezvous And Proximity Operations, Julia C. Bell

Theses and Dissertations

The evolving space environment has created a demand for autonomous spacecraft that can maneuver in complex and sometimes contentious environments. Constraint enforcement, such as an avoidance zone to prevent collision with a target, is a key component of autonomous control to ensure safety and performance requirements are met. Finite-horizon Model Predictive Control (MPC) is a popular control method due to its improved computation time while optimizing performance. Two areas of MPC in need of expansion are time-varying constraints and phase transitions in multi-phase applications. In this work, MPC is employed to track the reference trajectory of a multi-phase satellite inspection …


Applied Reachability Analysis For Time-Optimal Spacecraft Attitude Reorientations, Layne C. Barrett Mar 2021

Applied Reachability Analysis For Time-Optimal Spacecraft Attitude Reorientations, Layne C. Barrett

Theses and Dissertations

Satellite attitude reorientation has been of significant interest in astronautical engineering, and being able to reorient in a time-optimal manner has been of exceeding interest since the 1970s. Ensuring a spacecraft mission set can be conducted within a certain amount of time begs the question of whether or not a certain maneuver can be completed with a bounded control. This thesis answers that question by using the concept of reachability to provide reachable sets for different spacecraft reorientation scenarios. The reachable sets generated provide a range of initial states that guarantee a satellite reach a desired end orientation given a …