Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Aerospace Engineering

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel Dec 2021

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel

Doctoral Dissertations

Matrix normalizations are a critical component of mathematically rigorous aerodynamics analysis, especially where kinematic and thermodynamic behaviors are of interest. Here, a matrix normalization based around the entropy of a perturbation is derived according to the principles of mathematical entropy analysis and using a general definition of entropy amendable to physical phenomena such as thermal nonequilibrium and caloric and thermal imperfection. This normalization is shown to be closely related to the contemporary Chu energy normalization, expanding the range of validity of that normalization and clarifying the details of its interpretation. This relationship provides a basis for deriving other normalizations. Entropy …


The Effect Of Fuel Injector Spacing, Angle, And Blowing Ratio On The Fuel Air Mixing Performance Of A Scramjet Engine, Jonathan R. Copeland May 2021

The Effect Of Fuel Injector Spacing, Angle, And Blowing Ratio On The Fuel Air Mixing Performance Of A Scramjet Engine, Jonathan R. Copeland

Honors College Theses

In the operation of a Scramjet engine, which operates at hypersonic velocities, one of the most important factors is mixing the fuel and air before the high velocity air stream through the engine blows the mixture out of the engine before it could burn. Because of the importance of rapidly mixing fuel and air within a Scramjet engine, there are multiple design elements used to increase mixing. One of which is called a flame holder cavity, which is usually located behind fuel injectors, and designed with an open (length to depth ratio is less than 10) geometry to promote recirculation …


Computational Aerodynamics Of A Wing Mounted Propeller, Sarah Agam Apr 2021

Computational Aerodynamics Of A Wing Mounted Propeller, Sarah Agam

College of Engineering & Technology (Batten) Posters

Computational fluid dynamics (CFD) is a vital component in aerospace engineering. A major use of CFD is analyzing the flow properties to determine outputs like aerodynamic lift and drag over an airfoil or compute engine efficiency. It is more practical to conduct a CFD analysis first before doing experimental work as CFD allows for rapid and diverse testing of propeller shapes at a lower cost. CFD also allows for a wider range of testing parameters; for example, an airfoil can be subjected to steady, unsteady, incompressible, or high velocity flows.

Propellers are extensively used in the aircraft industry, especially in …


Development Of A Hybrid Particle Continuum Solver, Anthony J. Gay Mar 2021

Development Of A Hybrid Particle Continuum Solver, Anthony J. Gay

Master's Theses

When simulating complex flows, there are some physical situations that exhibit large fluctuations in particle density such as: planetary reentry, ablation due to arcing, rocket exhaust plumes, etc. When simulating these events, a high level of physical accuracy can be achieved with kinetic methods otherwise known as particle methods. However, this high level of physical accuracy requires large amounts of computation time. If the simulated flow is in collisional equilibrium, then less computationally intensive continuum methods, otherwise known as fluid methods, can be utilized. Hybrid Particle-Continuum (HPC) codes attempt to blend particle and fluid solutions in order to reduce computation …


Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski Jan 2021

Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski

Honors Undergraduate Theses

The FanWing propulsion system is a novel propulsion system which aerodynamically behaves as a hybrid between a helicopter and a fixed wing aircraft, and if the knowledge base with regards to this novel concept can be fully explored, there could be a new class of aircraft developed. In the current research, only 2D CFD studies have been done for the FanWing, hence the 3D lift characteristics of the FanWing have been unknown thus far, at least in the theoretical domain. Therefore, it was proposed to develop a modified Prandtl's Lifting Line Theory numerical solution and a CFD solution, comparing the …


Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott Jan 2021

Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott

International Journal of Aviation, Aeronautics, and Aerospace

Unmanned Aerial Systems (UAS) continue to grow in both popularity and utility within the national airspace system. The use of commercial UAS for civil inspection, specifically that of bridge structures, is becoming commonplace among practitioners and academics alike. The development of an integrated bridge-inspection hazard model provides a way for UAS operators to prepare for and respond to changing environmental conditions that could otherwise prevent a successful UAS flight. The interaction of wind-induced airflow with bridge surfaces creates an aerodynamic wake that can result in hazardous conditions for a UAS platform operating in close proximity. An analysis of this airflow …


Aerodynamic Characterization Of Bio-Mimicked Pleated Dragonfly Aerofoil, Md Akhtar Khan, Chinmaya Padhy Jan 2021

Aerodynamic Characterization Of Bio-Mimicked Pleated Dragonfly Aerofoil, Md Akhtar Khan, Chinmaya Padhy

International Journal of Aviation, Aeronautics, and Aerospace

The work inspired by the dragonfly wing corrugation positioned at the front wing's radius section lying at 40% of the total wingspan of forewing from the root section. During gliding flight, dragonfly wings presumed to be an ultra-light aerofoil due to its well-defined cross-sectional corrugation. The aerodynamic simulation carried out to understand the aerodynamic performance of a bio-mimetic dragonfly corrugated airfoil at low Reynolds number range of 75000-150000 to explore the potential advantages of pleated airfoils at a varying angle of attack from 0° to 12°. CFD analysis accomplished by using ANSYS Fluent to understand the aerodynamic performance of the …