Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Aerospace Engineering

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne Jan 2021

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne

Honors Undergraduate Theses

The cycling industry has long relied on expensive wind tunnel testing when designing aerodynamic products, particularly in the context of wheels which account for 10 to 15 percent of a cyclist's total aerodynamic drag. With the recent advent of Computational Fluid Dynamics (CFD), the industry now has an economical tool to supplement the wheel design process; however, the complex nature of rotating spoked wheels requires high resolution meshes to model at acceptable fidelity. This research investigates an alternative CFD method that lowers the computational cost of modeling aerodynamic bicycle wheels by modeling spokes using Blade Element Method (BEM). Two CFD …


Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper Jan 2021

Molten Regolith Electrolysis Processing For Lunar Isru: Financial And Physics Analysis Of Spacex Starship Transportation, Cheyenne Harper

Honors Undergraduate Theses

The purpose of the following research is to explore molten regolith electrolysis (MRE) methodology for in-situ resource utilization (ISRU) of Highlands lunar regolith, to be explored during the initial Artemis missions. An analysis of potential commercial launch providers for MRE-equipment based on technology-readiness level (TRL), payload mass support, and $ USD/kg payload price is provided. SpaceX is ultimately proposed as a launch provider of MRE equipment following multi-factorial analysis, with the SpaceX Starship human landing system (HLS) variant proposed for supporting MRE payload. Finally, customers of regolith-derived oxygen, aluminum, and silicon are distinguished to form the business case for operating …


Motor Control System For Near-Resonance High-Cycle Fatigue Testing, Samer K. Armaly Jan 2021

Motor Control System For Near-Resonance High-Cycle Fatigue Testing, Samer K. Armaly

Honors Undergraduate Theses

This research project develops a low-cost high-cycle fatigue (HCF) testing system comprised of an AC motor, variable frequency drive (VFD), eccentric cam, and feedback controller. The system acts as a forced harmonic oscillator leveraging mechanical resonance to vibrate a specimen at a frequency required to induce the testing's strain amplitudes.

This system depends highly on the material being tested. As such, the controller incorporates material characteristics. A frequency sweep measures the strain amplitude to characterize the specimen. Additionally, other measurements such as acceleration can be used as a proxy control variables for strain. A function converts the control variable to …


A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon Jan 2021

A Finite Difference Model For Induced Hypothermia During Shock, Dylan S. Lyon

Honors Undergraduate Theses

The modified Fiala model from Westin was implemented with conditions for circulatory shock and hypothermia. The purpose is to model Emergency Preservation and Resuscitation (EPR), a procedure for inducing hypothermia in patients. Cold tissue temperatures reduce metabolism exponentially, greatly extending the window of anaerobic metabolic activity before permanent deoxygenation damage. EPR in patients undergoing hypovolemic shock can preserve the patient until primary surgical care and blood transfusions are attainable., thereby increasing survival rates. The main applications of EPR are military in-situ stabilization for transit to clinical care and extending the survivability of patients requiring prolonged surgery before blood transfusion. The …


Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski Jan 2021

Development Of Lifting Line Theory For The Fanwing Propulsion System, Christopher Kaminski

Honors Undergraduate Theses

The FanWing propulsion system is a novel propulsion system which aerodynamically behaves as a hybrid between a helicopter and a fixed wing aircraft, and if the knowledge base with regards to this novel concept can be fully explored, there could be a new class of aircraft developed. In the current research, only 2D CFD studies have been done for the FanWing, hence the 3D lift characteristics of the FanWing have been unknown thus far, at least in the theoretical domain. Therefore, it was proposed to develop a modified Prandtl's Lifting Line Theory numerical solution and a CFD solution, comparing the …


Experimental Study Of A Liquid Fuel Bluff Body Flame At Elevated Pressures, Karam Paul Jan 2021

Experimental Study Of A Liquid Fuel Bluff Body Flame At Elevated Pressures, Karam Paul

Honors Undergraduate Theses

The purpose of this research was to operate a bluff body flame holder with the objective of stabilizing a flame at elevated pressures over a range of equivalence ratios. The ability to have a ground-based test rig capable of maintaining stable flames at high pressures and temperatures is critical in understanding flames present in modern jet engines and gas turbine technologies. The facility was reconfigured multiple times and the resultant flame was imaged within the optical test section. A converging nozzle was utilized to choke the flow and vary the operating pressures up to 5 atm. By regulating mass flow …