Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Physical Sciences and Mathematics

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 47

Full-Text Articles in Aerospace Engineering

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Dec 2021

Numerical Investigation On The Effect Of Spectral Radiative Heat Transfer Within An Ablative Material, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The spectral radiative heat flux could impact the material response. In order to evaluate it, a coupling scheme between KATS - MR and P1 approximation model of radiation transfer equation (RTE) is constructed and used. A Band model is developed that divides the spectral domain into small bands of unequal widths. Two verification studies are conducted: one by comparing the simulation computed by the Band model with pure conduction results and the other by comparing with similar models of RTE. The comparative results from the verification studies indicate that the Band model is computationally efficient and can be used to …


Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov Dec 2021

Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov

Publications

A robust nonlinear control method is developed for fluid flow velocity tracking, which formally addresses the inherent challenges in practical implementation of closed-loop active flow control systems. A key challenge being addressed here is flow control design to compensate for model parameter variations that can arise from actuator perturbations. The control design is based on a detailed reduced-order model of the actuated flow dynamics, which is rigorously derived to incorporate the inherent time-varying uncertainty in the both the model parameters and the actuator dynamics. To the best of the authors’ knowledge, this is the first robust nonlinear closed-loop active flow …


On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Data-Driven Damage Initiation Criteria For Carbon Fiber Reinforced Polymer Composites, Alexander Richard Post Nov 2021

Data-Driven Damage Initiation Criteria For Carbon Fiber Reinforced Polymer Composites, Alexander Richard Post

College of Computing and Digital Media Dissertations

Computational progressive failure analysis (PFA) is vital for the design, verification, and validation of carbon fiber reinforced polymer (CFRP) composites. However, the computational cost of PFA is usually high due to the complexity of the model. The damage initiation criterion is one of the essential components of a PFA code to determine the transition of a material’s state from pristine or microscopically damaged to macroscopically damaged. In this thesis, data-driven models are developed to determine the matrix damage initiation based on the Mohr-Coulomb model and Hashin model. For 2D plane stress states, the computational cost for determining damage initiation can …


Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero Nov 2021

Exploring Dft+U Parameter Space With A Bayesian Calibration Assisted By Markov Chain Monte Carlo Sampling, Pedram Tavadze, Reese Boucher, Guillermo Avendaño-Franco, Keenan X. Kocan, Sobhit Singh, Viviana Dovale-Farelo, Wilfredo Ibarra-Hernández, Matthew B. Johnson, David S. Mebane, Aldo H. Romero

Faculty & Staff Scholarship

The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo …


Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson Nov 2021

Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson

Faculty Publications

Safety is a simple concept but an abstract task, specifically with aircraft. One critical safety system, the Traffic Collision Avoidance System II (TCAS), protects against mid-air collisions by predicting the course of other aircraft, determining the possibility of collision, and issuing a resolution advisory for avoidance. Previous research to identify vulnerabilities associated with TCAS’s communication processes discovered that a false injection attack presents the most comprehensive risk to veritable trust in TCAS, allowing for a mid-air collision. This research explores the viability of successfully executing a false injection attack against a target aircraft, triggering a resolution advisory. Monetary constraints precluded …


Reaction Wheels Fault Isolation Onboard 3-Axis Controlled Satellite Using Enhanced Random Forest With Multidomain Features, Mofiyinoluwa Oluwatobi Folami Oct 2021

Reaction Wheels Fault Isolation Onboard 3-Axis Controlled Satellite Using Enhanced Random Forest With Multidomain Features, Mofiyinoluwa Oluwatobi Folami

Electronic Theses and Dissertations

With the increasing number of satellite launches throughout the years, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex it becomes difficult to generate a high-fidelity model that accurately describes all the system components. With such constraints using data-driven approaches becomes a more feasible option. One of the most commonly used actuators in spacecraft is known as the reaction wheel. If these reaction wheels are not maintained or monitored, it could result in mission failure and unwarranted costs. That is why fault detection …


Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton Oct 2021

Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton

Mechanical & Aerospace Engineering Theses & Dissertations

There has been increasing interest into the performance of electric vertical takeoff and landing (eVTOL) aircraft. The propellers used for the eVTOL propulsion systems experience a broad range of aerodynamic conditions, not typically experienced by propellers in forward flight, that includes large incidence angles relative to the oncoming airflow. Formal experiment design and analysis techniques featuring response surface methods were applied to a subscale, tilt-rotor wind tunnel test for three, four, five, and six blade, 16-inch diameter, propeller configurations in support of development of the NASA LA-8 aircraft. Investigation of low-speed performance included a maximum speed of 12 m/s and …


The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse Sep 2021

The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse

Dissertations and Theses

With data from experiments on a jet of air emitting from an orifice flush with the floor of a wind tunnel providing a transverse flow, analysis is conducted to extract information about the state of anisotropy in the Reynolds stress tensor. Inflow velocities are modulated across two distinct turbulence intensity regimes while holding jet exit conditions constant, providing an opportunity to isolate effects of both jet to crossflow velocity ratio, r and the effects of the turbulence carried by the crossflow. Anisotropy in the Reynolds stress tensor is examined through anisotropy invariant maps and evolution of the function F, …


Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire Aug 2021

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire

Dissertations

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest. The process by which thin liquids evolve is far from trivial and can lead to dewetting and drop formation. Understanding this process involves not only resolving the fluid mechanical aspects of the problem, but also requires the coupling of other physical processes, including liquid-solid interactions, thermal transport, and dependence of material parameters on temperature and material composition. The focus of this dissertation is on the mathematical modeling and simulation of nanoscale liquid metal films, which are deposited on thermally conductive substrates, liquefied by laser heating, and subsequently …


Modeling And Design Optimization For Membrane Filters, Yixuan Sun Aug 2021

Modeling And Design Optimization For Membrane Filters, Yixuan Sun

Dissertations

Membrane filtration is widely used in many applications, ranging from industrial processes to everyday living activities. With growing interest from both industrial and academic sectors in understanding the various types of filtration processes in use, and in improving filter performance, the past few decades have seen significant research activity in this area. Experimental studies can be very valuable, but are expensive and time-consuming, therefore theoretical studies offer potential as a cost-effective and predictive way to improve on current filter designs. In this work, mathematical models, derived from first principles and simplified using asymptotic analysis, are proposed for: (1) pleated membrane …


Euler's Three-Body Problem, Sylvio R. Bistafa Aug 2021

Euler's Three-Body Problem, Sylvio R. Bistafa

Euleriana

In physics and astronomy, Euler's three-body problem is to solve for the motion of a body that is acted upon by the gravitational field of two other bodies. This problem is named after Leonhard Euler (1707-1783), who discussed it in memoirs published in the 1760s. In these publications, Euler found that the parameter that controls the relative distances among three collinear bodies is given by a quintic equation. Later on, in 1772, Lagrange dealt with the same problem, and demonstrated that for any three masses with circular orbits, there are two special constant-pattern solutions, one where the three bodies remain …


Radiation Effects On Space Solar Cells At Various Earth And Jupiter Orbital Altitudes, Naazneen Rana Aug 2021

Radiation Effects On Space Solar Cells At Various Earth And Jupiter Orbital Altitudes, Naazneen Rana

Discovery Undergraduate Interdisciplinary Research Internship

Solar cells are used as the primary power source for earth-orbiting satellites and as a primary/secondary power source for various missions within the solar system. However, high energy particles from the sun, planetary magnetospheres, and the galaxy can affect the performance and life expectancy of the space solar cell and associated power systems. As the interests for interplanetary travel and the exploration of planets within our solar system increase, the need to understand a device’s performance within a particular planet’s environment is necessary. Therefore, this study will analyze the performance of space solar cells, particularly the SolAero IMM-α, at various …


Multilateration Index., Chip Lynch Aug 2021

Multilateration Index., Chip Lynch

Electronic Theses and Dissertations

We present an alternative method for pre-processing and storing point data, particularly for Geospatial points, by storing multilateration distances to fixed points rather than coordinates such as Latitude and Longitude. We explore the use of this data to improve query performance for some distance related queries such as nearest neighbor and query-within-radius (i.e. “find all points in a set P within distance d of query point q”). Further, we discuss the problem of “Network Adequacy” common to medical and communications businesses, to analyze questions such as “are at least 90% of patients living within 50 miles of a covered emergency …


Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin Jul 2021

Fully Coupled Internal Radiative Heat Transfer For The 3d Material Response Of Heat Shield, Raghava S. C. Davuluri, Rui Fu, Kaveh A. Tagavi, Alexandre Martin

Mechanical Engineering Faculty Publications

The radiative transfer equation (RTE) is strongly coupled to the material response code KATS. A P-1 approximation model of RTE is used to account for radiation heat transfer within the material. First, the verification of the RTE model is performed by comparing the numerical and analytical solutions. Next, the coupling scheme is validated by comparing the temperature profiles of pure conduction and conduction coupled with radiative emission. The validation study is conducted on Marschall et al. cases (radiant heating, arc-jet heating, and space shuttle entry), 3D Block, 2D IsoQ sample, and Stardust Return Capsule. The validation results agree well for …


An Analysis Of Capillary Flow In Finite Length Interior Corners, Samuel Shaw Mohler Jul 2021

An Analysis Of Capillary Flow In Finite Length Interior Corners, Samuel Shaw Mohler

Dissertations and Theses

We analyze the mathematical robustness of slow massively parallel interior corner flows in low gravity environments. An interior corner provides a preferential orientation in low gravity environments. This is a luxury usually only found on earth. It also provides a passive pumping mechanism due to geometry of a conduit. The driving force for this flow is a pressure difference due to local surface curvature gradients. An alternative reasoning is that due to the geometrical constraints the interior corner surface energy is unbounded below. This results in the liquid wicking into corners indefinitely. Interior corner flow's main quantity of interest is …


Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D Jul 2021

Modernization Of Scienttific Mathematics Formula In Technology, Iwasan D. Kejawa Ed.D, Prof. Iwasan D. Kejawa Ed.D

Department of Mathematics: Faculty Publications

Abstract
Is it true that we solve problem using techniques in form of formula? Mathematical formulas can be derived through thinking of a problem or situation. Research has shown that we can create formulas by applying theoretical, technical, and applied knowledge. The knowledge derives from brainstorming and actual experience can be represented by formulas. It is intended that this research article is geared by an audience of average knowledge level of solving mathematics and scientific intricacies. This work details an introductory level of simple, at times complex problems in a mathematical epidermis and computability and solvability in a Computer Science. …


Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke Jul 2021

Development And Applications Of Adjoint-Based Aerodynamic And Aeroacoustic Multidisciplinary Optimization For Rotorcraft, Ramiz Omur Icke

Mechanical & Aerospace Engineering Theses & Dissertations

Urban Air Mobility (UAM) is one of the most popular proposed solutions for alleviating traffic problems in populated areas. In this context, the proposed types of vehicles mainly consist of rotors and propellers powered by electric motors. However, those rotary-wing components can contribute excessively to noise generation. Therefore, a significant noise concern emerges due to urban air vehicles in or around residential areas. Reducing noise emitted by air vehicles is critically important to improve public acceptance of such vehicles for operations in densely populated areas.

Two main objectives of the present dissertation are: (1) to expand the multidisciplinary optimization to …


A Digital One Degree Of Freedom Model Of An Electromagnetic Position Sensor, Michelle Elizabeth Weinmann Jul 2021

A Digital One Degree Of Freedom Model Of An Electromagnetic Position Sensor, Michelle Elizabeth Weinmann

Mechanical & Aerospace Engineering Theses & Dissertations

The purpose of this project was to improve an existing system currently in use by NASA Langley Research Center (LaRC). The 6-inch Magnetic Suspension and Balance System (MSBS) built at MIT is operational with control in three degrees of freedom, with two additional degrees of freedom exhibiting passive stability. The means for measuring model displacement within the magnetic environment is an Electromagnetic Position Sensor (EPS), consisting of excitation coils at 20 kHz and multiple sets of pickup coils. The pickup coil voltages are proportional to model displacement in each degree of freedom. However, the EPS electronic signal processing system is …


High-Order Positivity-Preserving L2-Stable Spectral Collocation Schemes For The 3-D Compressible Navier-Stokes Equations, Johnathon Keith Upperman Jul 2021

High-Order Positivity-Preserving L2-Stable Spectral Collocation Schemes For The 3-D Compressible Navier-Stokes Equations, Johnathon Keith Upperman

Mathematics & Statistics Theses & Dissertations

High-order entropy stable schemes are a popular method used in simulations with the compressible Euler and Navier-Stokes equations. The strength of these methods is that they formally satisfy a discrete entropy inequality which can be used to guarantee L2 stability of the numerical solution. However, a fundamental assumption that is explicitly or implicitly used in all entropy stability proofs available in the literature for the compressible Euler and Navier-Stokes equations is that the thermodynamic variables (e.g., density and temperature) are strictly positive in the entire space{time domain considered. Without this assumption, any entropy stability proof for a numerical scheme …


Adaptive-Optimal Control Of Spacecraft Near Asteroids, Madhur Tiwari Jun 2021

Adaptive-Optimal Control Of Spacecraft Near Asteroids, Madhur Tiwari

Doctoral Dissertations and Master's Theses

Spacecraft dynamics and control in the vicinity of an asteroid is a challenging and exciting problem. Currently, trajectory tracking near asteroid requires extensive knowledge about the asteroid and constant human intervention to successfully plan and execute proximity operation. This work aims to reduce human dependency of these missions from a guidance and controls perspective. In this work, adaptive control and model predictive control are implemented to generating and tracking obstacle avoidance trajectories in asteroid’s vicinity.

Specifically, direct adaptive control derived from simple adaptive control is designed with e modification to track user-generated trajectories in the presence of unknown system and …


One Dimensional Study Of Magnetoplasmadynamic Thrusters For A Potential New Class Of Heavy Ion Drivers For Plasma Jet Driven Magnetoinertial Fusion, Patrick M. Brown Jun 2021

One Dimensional Study Of Magnetoplasmadynamic Thrusters For A Potential New Class Of Heavy Ion Drivers For Plasma Jet Driven Magnetoinertial Fusion, Patrick M. Brown

Theses and Dissertations

Plasma Jet Driven Magnetoinertial Fusion (PJMIF) requires high velocity heavy ion drivers in order to compress a magnetized target to fusion conditions. Previous work with heavy ion drivers has revealed sub-par accelerations due to plasma instabilities; thus, it is necessary to investigate new methods of heavy ion plasma acceleration. One such method is Magnetoplasmadynamic (MPD) thrusters. Past studies of these thrusters have been conducted at an initial temperature at or below the energy of full ionization. Here MPD thrusters are investigated using a Godunov type MHD solver with a Harten-Lax van Leer-D (HLLD) flux solving scheme assuming the plasma is …


Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman Jun 2021

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman

Master's Theses

Thermals are regions of rising hot air formed on the ground through the warming of the surface by the sun. Thermals are commonly used by birds and glider pilots to extend flight duration, increase cross-country distance, and conserve energy. This kind of powerless flight using natural sources of lift is called soaring. Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. A single thermal can net a pilot thousands of feet of elevation gain, however estimating thermal locations is not …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Inclusive Play Spaces, Carla Munemori Da Rosa Borges May 2021

Inclusive Play Spaces, Carla Munemori Da Rosa Borges

Featured Student Work

Sheridan’s Material ConneXion Library Interior Decorating intern, Carla Munemori da Rosa Borges, researched materials suitable for a barrier-free design for children’s play areas. The role of sustainable materials in children’s play and recreation areas and the role of texture are explored. Materials from the Material ConneXion Library have been chosen and their use in inclusive play areas are analyzed for design consideration and use characteristics.


A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann Apr 2021

A New Method For Estimating The Physical Characteristics Of Martian Dust Devils, Shelly Cahoon Mann

Mechanical & Aerospace Engineering Theses & Dissertations

Critical to the future exploration of Mars is having a detailed understanding of the atmospheric environment and its potential dangers. The dust devil is one of these potential dangers. The transport of dust through saltation is believed to be the driving mechanism responsible for Martian weather patterns. The two primary mechanisms for dust transport are dust storms and dust devils. Dust devils on Mars are a frequent occurrence with one in five so called giant dust devils being large enough to leave scars on the surface that are visible from space. Due to the thin atmosphere, winds of 60 mph …


A Framework For Autonomous Cooperative Optimal Assignment And Control Of Satellite Formations, Devin E. Saunders Mar 2021

A Framework For Autonomous Cooperative Optimal Assignment And Control Of Satellite Formations, Devin E. Saunders

Theses and Dissertations

A decentralized, cooperative multi-agent optimal control framework is presented to offer a solution to the assignment and control problems associated with performing multi-agent tasks in a proximity operations environment. However, the framework developed may be applied to a variety domains such as air, space, and sea. The solution presented takes advantage of a second price auction assignment algorithm to optimally task each satellite, while model predictive control is implemented to control the agents optimally while adhering to safety and mission constraints. The solution is compared to a pseudospectral collocation method, and a study on tuning parameters is included.


Delayed Authentication System For Civilian Satellite, Sean M. Feschak Mar 2021

Delayed Authentication System For Civilian Satellite, Sean M. Feschak

Theses and Dissertations

This thesis presents the feasibility of a Delayed Authentication System (DAS) for civilian satellite navigation (satnav) receivers. In satnav systems, encrypted signal components are transmitted synchronously with civilian components. Hence, the civilian signals can be authenticated by detecting the presence of encrypted signal components within the received signal. To authenticate, a reference station transmits estimated encrypted signal spreading code symbols processed using a high gain antenna. In this thesis, it is shown that a 1-meter diameter dish antenna is adequate to provide a high probability of successful authentication, thereby reducing overall system complexity and cost.


Low-Cost Terrestrial Demonstration Of Autonomous Satellite Proximity Operations, Zackary R. Hewitt Mar 2021

Low-Cost Terrestrial Demonstration Of Autonomous Satellite Proximity Operations, Zackary R. Hewitt

Theses and Dissertations

The lack of satellite servicing capabilities significantly impacts the development and operation of current orbital assets. With autonomous solutions under consideration for servicing, the purpose of this research is to build and validate a low-cost hardware platform to expedite the development of autonomous satellite proximity operations. This research aims to bridge the gap between simulation and existing higher fidelity hardware testing with an affordable alternative. An omnidirectional variant of the commercially available TurtleBot3 mobile robot is presented as a 3-DOF testbed that demonstrates a satellite servicing inspection scenario. Reference trajectories for the scenario are generated via optimal control using the …


Impendance Probe Payload Development For Space-Based Joint Service Collaboration, Brian T. Kay Mar 2021

Impendance Probe Payload Development For Space-Based Joint Service Collaboration, Brian T. Kay

Theses and Dissertations

Collaborations utilizing small spacecraft in near earth orbit between the U. S. Coast Guard Academy (CGA), Naval Research Lab (NRL), the U. S. Naval Academy (USNA), and the Air Force Institute of Technology (AFIT) have initiated scientific and engineering space-based experiments. Sourced opportunities like the VaSpace ThinSat missions have provided a platform for payload, sensor, and experiment development that would have otherwise been resource prohibitive. We have constructed an impedance probe payload derived from the existing ‘Space PlasmA Diagnostic suitE’ (SPADE) mission operating from NASA’s International Space Station. Currently both space and laboratory plasmas are investigated with AC impedance measurements …