Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Neural Net Architecture

Articles 1 - 2 of 2

Full-Text Articles in Aerospace Engineering

Optimal Beaver Population Management Using Reduced Order Distributed Parameter Model And Single Network Adaptive Critics, Radhakant Padhi, S. N. Balakrishnan Jan 2004

Optimal Beaver Population Management Using Reduced Order Distributed Parameter Model And Single Network Adaptive Critics, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control for a desired distribution of the animals is presented. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural network architecture. The objective of this research is to design an "optimal" beaver harvesting scheme for a region of interest.


Optimal Control Synthesis Of A Class Of Nonlinear Systems Using Single Network Adaptive Critics, Radhakant Padhi, Nishant Unnikrishnan, S. N. Balakrishnan Jan 2004

Optimal Control Synthesis Of A Class Of Nonlinear Systems Using Single Network Adaptive Critics, Radhakant Padhi, Nishant Unnikrishnan, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Adaptive critic (AC) neural network solutions to optimal control designs using dynamic programming has reduced the need of complex computations and storage requirements that typical dynamic programming requires. In this paper, a "single network adaptive critic" (SNAC) is presented. This approach is applicable to a class of nonlinear systems where the optimal control (stationary) equation is explicitly solvable for control in terms of state and costate variables. The SNAC architecture offers three potential advantages; a simpler architecture, significant savings of computational load and reduction in approximation errors. In order to demonstrate these benefits, a real-life micro-electro-mechanical-system (MEMS) problem has been …