Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerospace Engineering

Stability Analysis Of Jump-Linear Systems Driven By Finite-State Machines With Markovian Inputs, Sudarshan S. Patilkulkarni Jul 2004

Stability Analysis Of Jump-Linear Systems Driven By Finite-State Machines With Markovian Inputs, Sudarshan S. Patilkulkarni

Electrical & Computer Engineering Theses & Dissertations

A control system with a fault recovery mechanism in the feedback loop and with faults occurring in a non-deterministic manner can be modeled as a class of hybrid systems, i.e., a dynamical system switched by a finite-state machine or an automaton. When the plant and controller are linear, such a system can be modeled as a jump-linear system driven by a finite-state machine with a random input process. Such fault recovery mechanisms are found in flight control systems and distributed control systems with communication networks. In these critical applications, closed-loop stability of the system in the presence of fault recoveries …


Data Smoothing And Interpolation Using Eighth-Order Algebraic Splines, Daniel J. Simon Apr 2004

Data Smoothing And Interpolation Using Eighth-Order Algebraic Splines, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

A new type of algebraic spline is used to derive a filter for smoothing or interpolating discrete data points. The spline is dependent on control parameters that specify the relative importance of data fitting and the derivatives of the spline. A general spline of arbitrary order is first formulated using matrix equations. We then focus on eighth-order splines because of the continuity of their first three derivatives (desirable for motor and robotics applications). The spline's matrix equations are rewritten to give a recursive filter that can be implemented in real time for lengthy data sequences. The filter is lowpass with …


Swarming Reconnaissance Using Unmanned Aerial Vehicles In A Parallel Discrete Event Simulation, Joshua J. Corner Mar 2004

Swarming Reconnaissance Using Unmanned Aerial Vehicles In A Parallel Discrete Event Simulation, Joshua J. Corner

Theses and Dissertations

Current military affairs indicate that future military warfare requires safer, more accurate, and more fault-tolerant weapons systems. Unmanned Aerial Vehicles (UAV) are one answer to this military requirement. Technology in the UAV arena is moving toward smaller and more capable systems and is becoming available at a fraction of the cost. Exploiting the advances in these miniaturized flying vehicles is the aim of this research. How are the UAVs employed for the future military? The concept of operations for a micro-UAV system is adopted from nature from the appearance of flocking birds, movement of a school of fish, and swarming …


A Superior Tool For Airline Operations, Michael C. Dorneich, Stephen D. Whitlow, Christopher A. Miller, John A. Allen Jan 2004

A Superior Tool For Airline Operations, Michael C. Dorneich, Stephen D. Whitlow, Christopher A. Miller, John A. Allen

Michael C. Dorneich

The Diversion Off-Gate Management Assistant (DOGMA) is a decision support tool that mitigates problems in making diversion decisions in the airline industry. DOGMA helps inexperienced dispatchers to provide superior and consistent diversion decisions that translate into minimizing the impact of time-critical diversion decisions and increasing the airline's ability to recover from severe schedule disruptions. The tool integrates multiple information sources to improve dispatchers' situation awareness of the current state of flight, aircraft, maintenance, crew, and passenger schedules.


Design And Technologies For A Smart Composite Bridge, K. Chandrashekhara, Prakash Kumar, Steve Eugene Watkins, Antonio Nanni Jan 2004

Design And Technologies For A Smart Composite Bridge, K. Chandrashekhara, Prakash Kumar, Steve Eugene Watkins, Antonio Nanni

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An all-composite, smart bridge design for shortspan applications is described. The bridge dimensions are 9.14-m (30-ft.) long and 2.74-m (9-ft.) wide. A modular construction based on assemblies of pultruded fiber-reinforced-polymer (FRP) composite tubes is used to meet American Association of State Highway and Transportation Officials (AASHTO) H20 highway load ratings. The hollow tubes are 76 mm (3 in.) square and are made of carbon/vinyl-ester and glass/vinyl-ester. An extensive experimental study was carried out to obtain and compare properties (stiffness, strength, and failure modes) for a quarter portion of the full-sized bridge. The bridge response was measured for design loading, two-million-cycle …