Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Aerospace Engineering

Electromagnetic Scattering From A Gap In A Magneto-Dielectric Coating On An Infinite Ground Plane, George R. Simpson Nov 2002

Electromagnetic Scattering From A Gap In A Magneto-Dielectric Coating On An Infinite Ground Plane, George R. Simpson

Theses and Dissertations

The electromagnetic scattering from a gap in a magneto-dielectric coating on an infinite ground plane is analyzed. In this context, the gap forms a break only in the magneto-dielectric slab coating while the ground plane is continuous and unbroken. Volume equivalence is used to convert the gap region to one containing unknown volumetric equivalent electric and magnetic currents. The equivalent problem then is one of these currents radiating in the presence of an unbroken grounded magneto-dielectric slab. A Green's function for this geometry is developed consisting of two terms: a direct coupling term and correction term to account for the …


Numerical Studies Of Transition For Flows Around Multi-Element Airfoils, Fengjun Liu Aug 2002

Numerical Studies Of Transition For Flows Around Multi-Element Airfoils, Fengjun Liu

Dissertations

The transition of flows around a multi-element airfoil has been numerically studied using RANS with a k - e two-equation transition model, LST and DNS. The transition model uses an effective eddy-viscosity by coupling an intermittence-like correction to a turbulence eddy-viscosity that can be obtained via solving a parent k - e turbulence model. The transition model is truly predictive in that it is able to predict transition onset locations without having to specify prior knowledge of the targeted transition process. The predicted transition onset locations for all the cases studied were compared with the measured data. The results suggest …


Modeling Aspects Of Magnetic Actuators And Magnetic Suspension Systems, V. Dale Bloodgood Jr. Apr 2002

Modeling Aspects Of Magnetic Actuators And Magnetic Suspension Systems, V. Dale Bloodgood Jr.

Mechanical & Aerospace Engineering Theses & Dissertations

This dissertation is a study of new modeling techniques developed for magnetic suspension systems. The techniques discussed are modifications of magnetic circuit theory and fundamental eddy current models. The techniques are compared against experimental test results and finite element data. The information gained from the experimental testing is used to provide insight into magnetic bearing design.

A small-gap modeling technique called extended circuit theory is developed that incorporates information about the system gained from finite element data, or experimental data, to be included in the analytic model. The variations between the classical magnetic circuit model and the finite element model …


Experimental Vibration Analysis Of Inflatable Beams For An Afit Space Shuttle Experiment, Thomas G. Single Mar 2002

Experimental Vibration Analysis Of Inflatable Beams For An Afit Space Shuttle Experiment, Thomas G. Single

Theses and Dissertations

This study investigated the use of MEMS based devices to control the boundary layer separation from a circular cylinder in cross flow. Velocity profiles were measured experimentally in a low speed wind tunnel. Momentum thickness was measured as the primary way to determine a change in the flow field. The goal was to determine the angular location and frequency of operation that would provide an effect on the boundary layer of the cylinder. A 25% reduction of momentum loss in the cylinder wake was detected with an optimal angle of 69 degrees and an optimal frequency of operation equal to …


Supersonic Combustion And Mixing Characteristics Of Hydrocarbon Fuels In Screamjet Engines, Ahmed A. Taha Jan 2002

Supersonic Combustion And Mixing Characteristics Of Hydrocarbon Fuels In Screamjet Engines, Ahmed A. Taha

Mechanical & Aerospace Engineering Theses & Dissertations

The combustion characteristics of gaseous propane in supersonic airflow using the rearward-facing step that is swept inward from both end sides is studied. The effect of sweeping the step on the flow field features of propane combustion is investigated.

The study of the supersonic combustion of ethylene is carried out using different combustor configurations, different main fuel equivalence ratios, and different pilot fuel equivalence ratios.

The swept step shows the ability to hold the propane flame in the supersonic air stream without extinction. It was found that the side sweeping of the combustor exhibits the high temperature and combustion products …


Active And Adaptive Flow Control Of Twin-Tail Buffet And Applications, Zhi Yang Jan 2002

Active And Adaptive Flow Control Of Twin-Tail Buffet And Applications, Zhi Yang

Mechanical & Aerospace Engineering Theses & Dissertations

Modern fighter aircraft with dual vertical tails are operated at high angles of attack. The vortex generated by leading edge extension (LEX) breaks down before reaching the two vertical tails. The wake of highly unsteady, turbulent flow causes unbalanced broadband aerodynamic loading on the tails and may produce severe buffet on the tails and lead to tail fatigue failure.

Flow suction along the vortex cores (FSVC) is investigated as an active control method for tail-buffet alleviation. Suction tubes have been tilted at different angles to study the control effectiveness of suction tubes orientation. Flow field response, aerodynamic loading and aeroelastic …


Finite Element Modal Formulation For Panel Flutter At Hypersonic Speeds And Elevated Temperatures, Guangfeng Cheng Jan 2002

Finite Element Modal Formulation For Panel Flutter At Hypersonic Speeds And Elevated Temperatures, Guangfeng Cheng

Mechanical & Aerospace Engineering Theses & Dissertations

A finite element time domain modal formulation for analyzing flutter behavior of aircraft surface panels in hypersonic airflow has been developed and presented for the first time. Von Karman large deflection plate theory is used for description of the structural nonlinearity and third order piston theory is employed to account for the aerodynamic nonlinearity. The thermal loadings of uniformly distributed temperature and temperature gradients across the panel thickness are incorporated into the finite element formulation. By applying the modal reduction technique, the number of governing equations of motion is reduced dramatically so that the computational time of direct numerical integration …