Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy Nov 2015

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy

Terrence R Meyer

Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 timecorrelated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety …


Unsteady Effects On Trailing Edge Cooling, G. Medic, Paul A. Durbin Apr 2005

Unsteady Effects On Trailing Edge Cooling, G. Medic, Paul A. Durbin

Paul A. Durbin

It is shown how natural and forced unsteadiness play a major role in turbine blade trailing edge cooling flows. Reynolds averaged simulations are presented for a surface jet in coflow, resembling the geometry of the pressure side breakout on a turbine blade. Steady computations show very effective cooling; however when natural-or even moreso, forced-unsteadiness is allowed, the adiabatic effectiveness decreases substantially. Streamwise vortices in the mean flow are found to be the cause of the increased heat transfer.


Toward Improved Prediction Of Heat Transfer On Turbine Blades, G. Medic, Paul A. Durbin Apr 2002

Toward Improved Prediction Of Heat Transfer On Turbine Blades, G. Medic, Paul A. Durbin

Paul A. Durbin

Reynolds averaged computations of turbulent flow in a transonic turbine passage are presented to illustrate a manner in which widely used turbulence models sometimes provide poor heat transfer predictions. It is shown that simple, physically and mathematically based constraints can substantially improve those predictions.