Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Aerospace Engineering

Development Of A Meteorological Sensor Suite For Atmospheric Boundary Layer Measurement Using A Small Multirotor Unmanned Aerial System, Kevin A. Adkins Jun 2019

Development Of A Meteorological Sensor Suite For Atmospheric Boundary Layer Measurement Using A Small Multirotor Unmanned Aerial System, Kevin A. Adkins

Kevin A. Adkins, PhD

Small unmanned aerial systems (sUAS) are increasingly being used to conduct atmospheric research. Because of the dynamic nature and inhomogeneity of the atmospheric boundary layer (ABL), the ability of instrumented sUAS to make on-demand 3-dimensional high-resolution spatial measurements of atmospheric parameters makes them particularly suited to ABL investigations. Both fixed-wing and multirotor unmanned aircraft (UA) have been used for ABL investigations. Most investigations to date have included in-situ measurement of scalar quantities such as temperature, pressure and humidity. When wind has been measured, a variety of strategies have been used. Two of the most popular techniques have been deducing wind …


Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins Feb 2019

Urban Flow And Small Unmanned Aerial System Operations In The Built Environment, Kevin A. Adkins

Kevin A. Adkins, PhD

The Federal Aviation Administration (FAA) has put forth a set of regulations (Part 107) that govern small unmanned aerial system (sUAS) operations. These regulations restrict unmanned aircraft (UA) from flying over people and their operation to within visual line of sight (VLOS). However, as new applications for unmanned aerial systems (UAS) are discovered, their capabilities improve, and regulations evolve, there is an increasing desire to undertake urban operations, such as urban air mobility, package delivery, infrastructure inspection, and surveillance. This built environment poses new weather hazards that include enhanced wind shear and turbulence. The smaller physical dimensions, lower mass and …


The Next Step Beyond Identifying Field Variability: Integrating Unmanned Aerial Systems Into The Farm Management Workflow, Kevin A. Adkins, Christen C. Bailey, Aspen E. Taylor Apr 2018

The Next Step Beyond Identifying Field Variability: Integrating Unmanned Aerial Systems Into The Farm Management Workflow, Kevin A. Adkins, Christen C. Bailey, Aspen E. Taylor

Kevin A. Adkins, PhD

Precision agriculture strives to manage variations in the field in order to increase yield while adapting input factors to preserve resources and decrease production costs. Unmanned aerial systems (UAS) are advancing precision agriculture by allowing for nondestructive and convenient, as well as cost and time efficient mapping of spatial variation in fields with higher spatial resolution than previous methods. However, while there is much anticipation regarding the potential role for UAS in precision agriculture, their role still requires additional application-based testing. The objective of this work was to explore how growers best integrate the UAS product into their farm workflow. …


The Next Step Beyond Identifying Field Variability: On-Farm Investigations Using An Unmanned Aerial System To Accurately Diagnose Crop Disease, Kevin A. Adkins Apr 2018

The Next Step Beyond Identifying Field Variability: On-Farm Investigations Using An Unmanned Aerial System To Accurately Diagnose Crop Disease, Kevin A. Adkins

Kevin A. Adkins, PhD

Precision agriculture strives to manage variations in the field in order to increase yield while adapting input factors to preserve resources and decrease production costs. Unmanned aerial systems (UAS) are advancing precision agriculture by allowing for nondestructive and convenient, as well as cost and time efficient mapping of spatial variation in fields with higher spatial resolution than previous methods. However, while there is much anticipation regarding the potential role for UAS in precision agriculture, their role still requires additional application-based testing. The objective of this work was to explore how growers best integrate the UAS product into their farm workflow. …