Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Aerospace Engineering

Testing A Novel Cryptosystem For Use In Securing Small Satellite Communications, Samuel Jackson, Scott Kerlin, Jeremy Straub Aug 2015

Testing A Novel Cryptosystem For Use In Securing Small Satellite Communications, Samuel Jackson, Scott Kerlin, Jeremy Straub

Jeremy Straub

Cryptography in the domain of Small Satellites is a topic of growing importance. While large satellites are likely to have the hardware requirements to run common cryptographic algorithms, small satellites are extremely limited in both hardware capabilities, which limits the speed and security of cryptosystems implemented in software, and available physical space, which limits the ability to include cryptosystems implemented in hardware. However, small satellites are growing in popularity, and as such securing communications becomes a necessity for some. The Department of Defense is exploring the possibility of using CubeSats, a type of small satellite, in their operations, as are …


A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


Small Satellite Communication System Creation At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

Small Satellite Communication System Creation At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Mar 2015

A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter small spacecraft development program aims to develop a template that can be used by colleges and universities world-wide to ‘jumpstart’ their own CubeSat development program. It is doing this through the development of designs (and implementations to test the designs functionality) of all basic CubeSat subsystems. A CubeSat can prospectively perform elements of a mission that would otherwise have required the development and deployment of a multi-million dollar satellite, thus, interest in CubeSats in industry and government is strong as well. The Open Prototype for Educational Nanosats (OPEN) design being produced by the OpenOrbiter program may, thus, be …


Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis Mar 2015

Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis

Jeremy Straub

Communications security is gaining importance as small spacecraft include actuator capabilities (i.e., propulsion), payloads which could be misappropriated (i.e., high resolution cameras), and research missions with high value/cost. However, security is limited by capability, interoperability and regulation. Additionally, as the small satellite community becomes more mainstream and diverse, the lack of cheap, limited-to-no configuration, pluggable security modules for small satellites also presents a limit for user adoption of security.

This paper discusses a prospective approach for incorporating robust security into a student-developed ground station created at the University of North Dakota as part of a Computer Science Department senior design …


Intelligent Water Drops Algorithm For Coordinating Between Cluster Spacecraft In A Communications-Denied Environment, Jeremy Straub Jan 2015

Intelligent Water Drops Algorithm For Coordinating Between Cluster Spacecraft In A Communications-Denied Environment, Jeremy Straub

Jeremy Straub

This paper presents a modification of Shah-Hosseini’s Intelligent Water Drops (IWD) technique that can be utilized for collaborative control of multiple spacecraft in environments where communications are limited, intermittent or denied. It presents Shah- Hosseini’s base IWD algorithm as well as refinements thereof, which simplify it, making it more suitable for more computationally constrained environments (such as small spacecraft and UAVs). A framework for testing the proposed approach as well as several implementation impediments are discussed.


Development Of A Ground Station For The Openorbiter Spacecraft, Jacob Huhn, Alexander Lewis, Christoffer Korvald, Jeremy Straub, Scott Kerlin Apr 2014

Development Of A Ground Station For The Openorbiter Spacecraft, Jacob Huhn, Alexander Lewis, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative[1] at the University of North Dakota is working to design and build a low cost[2] and open-hardware / opensource software CubeSat[3]. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Advancement Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian, Ronald Marsh Apr 2014

Advancement Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian, Ronald Marsh

Jeremy Straub

Software Defined Radios (SDRs) are an exciting development in radio technology. The SDR uses software to perform many of the tasks that only hardware could previously complete on a traditional analog radio. Such tasks include encoding/decoding or applying filters to reduce noise on the signal. This powerful fusion of software and hardware have allowed SDR to be smaller in size and have a greater functionality than traditional radio setups; a perfect solution for our Open Orbiter satellite. Currently, the implementation we use consists of a simple $20 USB TV decoder for receiving, a Raspberry Pi micro-computer for transmission, and the …


Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin Mar 2014

Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative[1] at the University of North Dakota is working to design and build a low cost[2] and open-hardware / opensource software CubeSat[3]. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Evolution Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian Mar 2014

Evolution Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian

Jeremy Straub

Software Defined Radios (SDRs) are an exciting development in radio technology. The SDR uses software to perform many of the tasks that only hardware could previously complete on a traditional analog radio. Such tasks include encoding/decoding or applying filters to reduce noise on the signal. This powerful fusion of software and hardware have allowed SDR to be smaller in size and have a greater functionality than traditional radio setups; a perfect solution for our Open Orbiter satellite. Currently, the implementation we use consists of a simple $20 USB TV decoder for receiving, a Raspberry Pi micro-computer for transmission, and the …


Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin Dec 2013

Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin

Jeremy Straub

OpenOrbiter is a student project at the University of North Dakota to design and build a low cost1 and open-hardware / open-source software CubeSat2. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Work On A Software Defined Radio (Sdr) For A Cubesat-Class Spacecraft, Michael Wegerson, Jeremy Straub, Sima Noghanian Dec 2013

Work On A Software Defined Radio (Sdr) For A Cubesat-Class Spacecraft, Michael Wegerson, Jeremy Straub, Sima Noghanian

Jeremy Straub

A Software Defined Radio (SDR) will be used for OpenOrbit-er satellite to ground communications. The use of SDR al-lows for a smaller, more versatile radio then what a stand-ard hardware radio can provide; perfect for the unpredicta-ble environment Open Orbiter will be exposed to. Current implementation uses a simple $20 USB TV decoder for the receiver and the open-source program GNU Radio for soft-ware decoding. Broadband FM transmissions have been re-ceived and decoded successfully and on-going experimen-tation for receiving satellite communications are yielding promising results.


Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin Dec 2013

Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

In CSCI 297 class we partake in learning the roles of software team leads and developers. With hands on activities that get us involved in what a real manager of a software team may do such as: defining a project, planning a project, developing a work breakdown structure, estimating the work, developing a project schedule, etc. This work is performed in the context of the OpenOrbiter project which seeks to build a low-cost spacecraft1 that can be produced with a parts budget of approxi-mately $5,0002 by schools worldwide. The ground station software team’s purpose within Open Orbiter project is to …


Exposing Multiple User-Specific Data Denominated Products From A Single Small Satellite Data Stream, Atif F. Mohammad,, Emanuel Grant, Jeremy Straub, Ronald Marsh, Scott Kerlin Mar 2013

Exposing Multiple User-Specific Data Denominated Products From A Single Small Satellite Data Stream, Atif F. Mohammad,, Emanuel Grant, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

This paper presents a research work on small satellite data stream and related distribution to associated stakeholders, which is a field that needs to get explored in more detail. The algorithm that is presented to extract USDDP (User-Specific Data Denominated Products) is a self managing body, which will be within as Open Space Box environment or OSBE as a novel idea. It contains an individual stream transmitted by the small satellite, which later is to be converted into USDDP. The context defined here deals with area in detail. Contexts are vitally important because they control, influence and affect everything within …


Small Satellites With Micro-Propulsion For Communications With The Lunar South Pole Aitkens Basin, Samudra E. Haque, Jeremy Straub, David Whalen Mar 2013

Small Satellites With Micro-Propulsion For Communications With The Lunar South Pole Aitkens Basin, Samudra E. Haque, Jeremy Straub, David Whalen

Jeremy Straub

A lunar sample return mission to the Lunar South-Pole Aitkens Basin (LSPAB) has been highlighted as a high priority objective of the most recent (2011) Decadal Survey for Planetary Science, by the National Research Council. This class of mission, however, faces a dramatic communications limitation, due to the lack of a frequent, or continuous, line-of-sight communications path to Earthbased ground stations. Brunner and others have proposed a communications system utilizing Low Lunar Polar Orbits (LLPO) and Lunar Halo orbits for this purpose. Ely and others have outlined proposals for using several communication satellites to form a relay network using LLPO, …