Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 158

Full-Text Articles in Aerospace Engineering

Suitability Testing For Possum Scientist-Astronaut Candidates Using The Suborbital Space Flight Simulator With An Iva Spacesuit, Pedro J. Llanos, Victor Kitmanyen, Erik Seedhouse, Ryan L. Kobrick May 2019

Suitability Testing For Possum Scientist-Astronaut Candidates Using The Suborbital Space Flight Simulator With An Iva Spacesuit, Pedro J. Llanos, Victor Kitmanyen, Erik Seedhouse, Ryan L. Kobrick

Ryan L. Kobrick

This paper evaluates key functional data parameters that must be considered for suborbital spaceflight participants wearing pressurized suits for intravehicular activity (IVA). Data parameters of an analog spacesuit worn in an analog flight environment were obtained from 40 civilian participants using the Suborbital Space Flight Simulator (SSFS) at Embry-Riddle Aeronautical University (ERAU) while donning Final Frontier Design’s (FFD) fully pressurized third-generation spacesuit as part of their training for Project PoSSUM (the Polar Suborbital Science in the Upper Mesosphere Project). The physiological data collected included: blood pressure, electrocardiograms, heart rate, grip strength, and skin temperature. These parameters were measured using a …


Mapping Of Iva Spacesuit Mobility: Design Observations And Functionality, Gavin C. James, Ryan L. Kobrick, Victor Kitmanyen May 2019

Mapping Of Iva Spacesuit Mobility: Design Observations And Functionality, Gavin C. James, Ryan L. Kobrick, Victor Kitmanyen

Ryan L. Kobrick

The SUIT Lab at Embry-Riddle Aeronautical University is a joint student-faculty project utilizing multiple high altitude pressure garments to investigate suited crew capabilities within a spacecraft during simulated spaceflight missions. The testing environment within the SUIT lab includes the use of suits in a lowfidelity capsule cabin mockup with a horizontally situated launch-positioned chair simulator. Standard videography and analytical video software are used to determine levels of achievement in ergonomic range of motion and comfort design across multiple spacesuits. Comparative analysis and testing provide data supporting the requirement for the use of particular spacesuits inside proposed commercial launch vehicles. Results …


Human Factors For Small Net Habitable Volume: The Case For A Close-Quarter Space Habitat Analog, Victor Kitmanyen, Timothy J. Disher, Ryan L. Kobrick, Jason P. Kring May 2019

Human Factors For Small Net Habitable Volume: The Case For A Close-Quarter Space Habitat Analog, Victor Kitmanyen, Timothy J. Disher, Ryan L. Kobrick, Jason P. Kring

Ryan L. Kobrick

Increasing efforts in sending humans to Mars calls for greater considerations of the ways in which vehicle and habitat design can influence crew performance and behavioral health.


Space Suit Concepts And Vehicle Interfaces For The Constellation Program, D. M. Klaus, J. Metts, R. Kobrick, M. Mesloh, T. Monk, Et Al. May 2019

Space Suit Concepts And Vehicle Interfaces For The Constellation Program, D. M. Klaus, J. Metts, R. Kobrick, M. Mesloh, T. Monk, Et Al.

Ryan L. Kobrick

In carrying out NASA’s Vision for Space Exploration, a number of different environments will be encountered that will require the crew to wear a protective space suit. Specifically, four suited mission phases are identified as Launch, Entry & Abort profiles, Contingency 0g (orbital) Extravehicular Activity (EVA), Lunar Surface EVA and Martian Surface EVA. This study presents conceptual design solutions based on a previous architecture assessment that defined space suit operational requirements for four proposed space suit configuration options. In addition, a subset of vehicle interface requirements are defined for enabling umbilical and physical connections between the suits and the various …


Exploring New Lagrangian Cyclers To Enhance Science: Communications With Cubesat Technology, Pedro P. Llanos, Abdiel Santos Galindo, John Ford May 2018

Exploring New Lagrangian Cyclers To Enhance Science: Communications With Cubesat Technology, Pedro P. Llanos, Abdiel Santos Galindo, John Ford

Pedro J. Llanos (www.AstronauticsLlanos.com)

This paper discusses the opportunities that abound by using the CubeSat technology to travel to and communicate with the International Space Station, explore space, monitor space weather, monitor space debris and perhaps travel to Mars.


Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson May 2018

Space Operations In The Suborbital Space Flight Simulator And Mission Control Center: Lessons Learned With Xcor Lynx, Pedro Llanos, Christopher Nguyen, David Williams, Kim O. Chambers Ph.D., Erik Seedhouse, Robert Davidson

Pedro J. Llanos (www.AstronauticsLlanos.com)

This study was conducted to better understand the performance of the XCOR Lynx vehicle. Because the Lynx development was halted, the best knowledge of vehicle dynamics can only be found through simulator flights. X-Plane 10 was chosen for its robust applications and accurate portrayal of dynamics on a vehicle in flight. The Suborbital Space Flight Simulator (SSFS) and Mission Control Center (MCC) were brought to the Applied Aviation Sciences department in fall 2015 at Embry-Riddle Aeronautical University, Daytona Beach campus. This academic and research tool is a department asset capable of providing multiple fields of data about suborbital simulated flights. …


Heteroclinic And Homoclinic Connections Between The Sun-Earth Triangular Points And Quasi-Satellite Orbits For Solar Observations, Pedro J. Llanos, Gerald R. Hintz, Martin W. Lo, James K. Miller May 2018

Heteroclinic And Homoclinic Connections Between The Sun-Earth Triangular Points And Quasi-Satellite Orbits For Solar Observations, Pedro J. Llanos, Gerald R. Hintz, Martin W. Lo, James K. Miller

Pedro J. Llanos (www.AstronauticsLlanos.com)

Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L4 and L5 and the collinear point L3 of the CRTBP (circular restricted three-body problem) in the Sun-Earth system. These trajectories could serve as channels through where material can be transported from L5 to L3 by performing small maneuvers at the departure of the Trojan orbit. …


Suitability Testing For Possum Scientist-Astronaut Candidates Using The Suborbital Space Flight Simulator With An Iva Spacesuit, Pedro J. Llanos, Victor Kitmanyen, Erik Seedhouse, Ryan L. Kobrick May 2018

Suitability Testing For Possum Scientist-Astronaut Candidates Using The Suborbital Space Flight Simulator With An Iva Spacesuit, Pedro J. Llanos, Victor Kitmanyen, Erik Seedhouse, Ryan L. Kobrick

Pedro J. Llanos (www.AstronauticsLlanos.com)

This paper evaluates key functional data parameters that must be considered for suborbital spaceflight participants wearing pressurized suits for intravehicular activity (IVA). Data parameters of an analog spacesuit worn in an analog flight environment were obtained from 40 civilian participants using the Suborbital Space Flight Simulator (SSFS) at Embry-Riddle Aeronautical University (ERAU) while donning Final Frontier Design’s (FFD) fully pressurized third-generation spacesuit as part of their training for Project PoSSUM (the Polar Suborbital Science in the Upper Mesosphere Project). The physiological data collected included: blood pressure, electrocardiograms, heart rate, grip strength, and skin temperature. These parameters were measured using a …


Creating An Experimental Learning And Research Driven Spacesuit Lab For Erau, Ryan L. Kobrick, Erik Seedhouse Sep 2017

Creating An Experimental Learning And Research Driven Spacesuit Lab For Erau, Ryan L. Kobrick, Erik Seedhouse

Ryan L. Kobrick

This paper evaluates key functional data parameters that must be considered for suborbital spaceflight participants wearing pressurized suits for intravehicular activity (IVA). Data parameters of an analog spacesuit worn in an analog flight environment were obtained from 40 civilian participants using the Suborbital Space Flight Simulator (SSFS) at Embry-Riddle Aeronautical University (ERAU) while donning Final Frontier Design’s (FFD) fully pressurized third-generation spacesuit as part of their training for Project PoSSUM (the Polar Suborbital Science in the Upper Mesosphere Project). The physiological data collected included: blood pressure, electrocardiograms, heart rate, grip strength, and skin temperature. These parameters were measured using a …


Integrating Spaceshiptwo Into The National Airspace System, Erik Seedhouse, Pedro Llanos Aug 2017

Integrating Spaceshiptwo Into The National Airspace System, Erik Seedhouse, Pedro Llanos

Pedro J. Llanos (www.AstronauticsLlanos.com)

The increasing number of commercial suborbital space flights over the next decade may lead to the development of commercial suborbital transportation. This may lead to risks to civil aviation and the hazards that may arise from the interaction of suborbital spacecraft with controlled air space. To do this the National Airspace System will need to accommodate a growing number of suborbital spacecraft. An example of one of the suborbital vehicles being developed is Virgin Galactic’s SpaceShipTwo. This paper analyzes the performance of SpaceShipTwo using simulated nominal flight research data conducted at Embry-Riddle Aeronautical University’s Suborbital Spaceflight Simulator.


Implementing And Testing A Novel Chaotic Cryptosystem, Samuel Jackson, Scott Kerlin, Jeremy Straub Oct 2015

Implementing And Testing A Novel Chaotic Cryptosystem, Samuel Jackson, Scott Kerlin, Jeremy Straub

Jeremy Straub

Cryptography in the domain of small satellites is a relatively new area of research. Compared to typical desktop computers, small satellites have limited bandwidth, processing power, and battery power. Many of the current encryption schemes were developed for desktop computers and servers, and as such may be unsuitable for small satellites. In addition, most cryptographic research in the domain of small satellites focuses on hardware solutions, which can be problematic given the limited space requirements of small satellites.

This paper investigates potential software solutions that could be used to encrypt and decrypt data on small satellites and other devices with …


An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub Sep 2015

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub

Jeremy Straub

An attitude determination and control system (ADCS) is used to orient a spacecraft for a wide variety of purposes (e.g., to keep a camera facing Earth or orient the spacecraft for propulsion system use). The proposed intelligent ADCS has several key features: first, it can be used in multiple modes, spanning from passive stabilization of two axes and unconstrained spin on a third to three-axis full active stabilization. It also includes electromagnetic components to ‘dump’ spin from the reaction wheels. Second, the ADCS utilizes an incorporated autonomous control algorithm to characterize the effect of actuation of the system components and, …


A Bent-Pipe Microwave Wireless Power Transfer Spacecraft For Relay To Unserved Regions, Jeremy Straub Sep 2015

A Bent-Pipe Microwave Wireless Power Transfer Spacecraft For Relay To Unserved Regions, Jeremy Straub

Jeremy Straub

This paper seeks to begin a discussion about the efficacy of using a ‘bent pipe’ transmission concept (familiar to those in the communications satellite arena) for power transfer. It presents the ‘bent pipe’ concept and provides a brief qualitative consideration of the benefits of this approach. It also begins the process of quantitatively considering the efficacy of a ‘bent pipe’ mission by exploring the trade space related to frequency, antenna size and altitude.


Initial Results From The First National Survey Of Student Outcomes From Small Satellite Program Participation, Jeremy Straub Sep 2015

Initial Results From The First National Survey Of Student Outcomes From Small Satellite Program Participation, Jeremy Straub

Jeremy Straub

This paper presents initial results of the first national / international survey of student participants in CubeSat and other small spacecraft programs. It aims to make portions of the results of the survey available for immediate use by the CubeSat / small spacecraft community prior to the completion of a thorough analysis of the results and consideration of correlating and prospective causation factors for various outcomes.


Design And Implementation Of Satellite Software To Facilitate Future Cubesat Development, Timothy Whitney, Jeremy Straub, Ronald Marsh Sep 2015

Design And Implementation Of Satellite Software To Facilitate Future Cubesat Development, Timothy Whitney, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter project is a campus-wide effort at the University of North Dakota to design and build a low-cost CubeSat-class satellite. The intent is to create a publically- available framework that allows a spacecraft to be built with a parts cost of less than USD $5,000 (excluding mission payload-specific costs). This paper focuses on OpenOrbiter’s software system methodology and implementation.

Current work seeks to create a generalized framework that other CubeSat developers can use directly or alter to suit their mission needs. It discusses OpenOrbiter’s overall design goals with an emphasis on software design. The software architecture is divided into …


Software Design For An Intelligent Attitude Determination And Control System, Matthew Russell, Jeremy Straub Aug 2015

Software Design For An Intelligent Attitude Determination And Control System, Matthew Russell, Jeremy Straub

Jeremy Straub

Space exploration and satellite missions often carry equipment that must be accurately pointed towards distant targets, therefore making an effective attitude determination and control system (ADCS) a vital component of almost every spacecraft. However, the effectiveness of the ADCS could decrease drastically if components shift during launch, degrade in efficiency over the course of the mission, or simply fail. Prior work [0] has presented a concept for a adaptive ADCS which can respond to changing spacecraft conditions and environmental factors. This poster presents an implementation for a lazy learning ADCS is presented that uses past maneuver data to construct and …


Testing A Novel Cryptosystem For Use In Securing Small Satellite Communications, Samuel Jackson, Scott Kerlin, Jeremy Straub Aug 2015

Testing A Novel Cryptosystem For Use In Securing Small Satellite Communications, Samuel Jackson, Scott Kerlin, Jeremy Straub

Jeremy Straub

Cryptography in the domain of Small Satellites is a topic of growing importance. While large satellites are likely to have the hardware requirements to run common cryptographic algorithms, small satellites are extremely limited in both hardware capabilities, which limits the speed and security of cryptosystems implemented in software, and available physical space, which limits the ability to include cryptosystems implemented in hardware. However, small satellites are growing in popularity, and as such securing communications becomes a necessity for some. The Department of Defense is exploring the possibility of using CubeSats, a type of small satellite, in their operations, as are …


Improving Satellite Security Through Incremental Anomaly Detection On Large, Static Datasets, Connor Hamlet, Matthew Russell, Jeremy Straub, Scott Kerlin Aug 2015

Improving Satellite Security Through Incremental Anomaly Detection On Large, Static Datasets, Connor Hamlet, Matthew Russell, Jeremy Straub, Scott Kerlin

Jeremy Straub

Anomaly detection is a widely used technique to detect system intrusions. Anomaly detection in Intrusion Detection and Prevent Systems (IDPS) works by establishing a baseline of normal behavior and classifying points that are at a farther distance away as outliers. The result is an “anomaly score”, or how much a point is an outlier. Recent work has been performed which has examined use of anomaly detection in data streams [1]. We propose a new incremental anomaly detection algorithm which is up to 57,000x faster than the non-incremental version while slightly sacrificing the accuracy of results. We conclude that our method …


The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen May 2015

The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen

Jeremy Straub

This paper discusses the use of the system-of-systems (SoS) methodology and SoS engineering (SoSE) to the challenge of the design and operation of a CubeSat-class spacecraft. It considers this in the context of one critical component system, the electrical power system (EPS) which interacts with virtually all other systems onboard the spacecraft. The spacecraft is also considered in the context of being a system-component of a larger mission system-of-systems. The efficacy of SoSE use for this endeavor is considered and recommendations are made for the use of SoS and SoSE by other small spacecraft and, more broadly, spacecraft developers.


Consideration Of The Use Of An Origami Style Solar Panel Array For A Space Solar Power Generation Satellite, Landon Klein, Tristan Plante, Alex Holland, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Consideration Of The Use Of An Origami Style Solar Panel Array For A Space Solar Power Generation Satellite, Landon Klein, Tristan Plante, Alex Holland, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

Since the beginning of the space race, space exploration has been an important part of America’s technological develop-ment. The notion of a power-intensive [1] mission to Mars, which utilizes 3D printing has been proposed. Space Solar Power can supply energy for this mission. This paper presents an Origami solar panel, based on work by [2], that can supply power to an outpost on Mars.


Consideration Of The Use Of A Space Solar Power Satellite System For A Manned Mars Mission, Benjamin Kading, Jeremy Straub, Tristan Plante, Alex Holland, Jordan Forbord, Landon Klein, David Whalen Apr 2015

Consideration Of The Use Of A Space Solar Power Satellite System For A Manned Mars Mission, Benjamin Kading, Jeremy Straub, Tristan Plante, Alex Holland, Jordan Forbord, Landon Klein, David Whalen

Jeremy Straub

The design of a manned Mars mission has been a point of ongoing interest . Numerous Mars missions have been proposed and designed but major roadblocks impair their completion. Primarily, these issues are related to cost and safety concerns. However, many technologies have been developed and are being developed to make a Mars mission more feasible. One such technology is Space So- lar Power. (SSP) SSP technology involves generating power in space from the sun and beaming it via microwave radia- tion to a ground site for use. This method has immediate usability on Mars due to the minimal atmosphere, …


Scheduling Algorithm Development For An Open Source Software And Open Hardware Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh Apr 2015

Scheduling Algorithm Development For An Open Source Software And Open Hardware Spacecraft, Calvin Bina, Jeremy Straub, Ronald Marsh

Jeremy Straub

The efficacy of each type of scheduler is assessed rela-tive to the goal of having a time and resource efficient scheduling algorithm. The scheduler must ensure suc-cessful spacecraft operations and maximize the perfor-mance of tasks relative to performance constraints and their respective due dates.


Design And Analysis Of A Mars Supply Spacecraft, Tristan Plante, Alex Holland, Landon Klein, Jordan Forbord, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Design And Analysis Of A Mars Supply Spacecraft, Tristan Plante, Alex Holland, Landon Klein, Jordan Forbord, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

This poster considers one part of a space solar power-based mission to sup-ply wireless power for use on the Mar-tian surface. It presents a cargo capsule designed to house the necessities for human survival, as well as research equipment , and safely deliver them to a predetermined destination on Mars.


Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Apr 2015

Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative aims to create an Open Prototype for Educational Nanosats (OPEN) framework (see [1]) for a complete 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a total parts cost of less than $5,000 [2]. In order to supply all spacecraft subsystems with power, an electrical power system (EPS) has been implemented. The EPS generates power using multiple solar panels, stores it in batteries and regulates it to provide continuous levels of power to all of the subsystems of the spacecraft. The EPS has a crucial role in the spacecraft …


Cubesat Deployable Solar Panel System, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Cubesat Deployable Solar Panel System, Thomas Mcguire, Skye Leake, Michael Parsons, Michael Hirsch, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

CubeSats are small spacecraft with a nominal size of 10 cm x 10 cm x 10 cm and a mass of 1.33 kg [1] (though some launch providers are now supporting expanded mass levels). While the CubeSat form factor has re-duced the time and cost of spacecraft development, the required resources are still beyond the grasp of many colleges and universities. The Open Prototype for Educational Nanosats (OPEN) aims to solve this problem. OPEN is an inexpen-sive modular CubeSat that can be produced with a parts budget of less than $5,000 [2]. The OpenOrbiter pro-gram is working to develop this …


Pattern Recognition And Expert Systems For Microwave Wireless Power Transmission Failure Prevention, Cameron Kerbaugh, Allen Mcdermott, Jeremy Straub, Eunjin Kim Apr 2015

Pattern Recognition And Expert Systems For Microwave Wireless Power Transmission Failure Prevention, Cameron Kerbaugh, Allen Mcdermott, Jeremy Straub, Eunjin Kim

Jeremy Straub

Wireless power transfer (WPT) can be used to deliver space-generated power to ground stations through the use of microwave beams. WPT satellite power delivery systems have two major failure states: misdi-recting a beam and failing to send power to a station. This project has implemented an expert system to perform pattern recognition in an effort to prevent failures by analyzing the system state and predicting potential failures before they happen in support of space-based testing [1] and deployment [2].


Design Concept For A Power Generating Satellite For A Manned Mars Mission, Alex Holland, Tristan Plante, Jordan Forbord, Landon Klein, Benjamin Kading, Jeremy Straub, David Whalen Apr 2015

Design Concept For A Power Generating Satellite For A Manned Mars Mission, Alex Holland, Tristan Plante, Jordan Forbord, Landon Klein, Benjamin Kading, Jeremy Straub, David Whalen

Jeremy Straub

Once proposed work in low-Earth orbit [1] to demonstrate the efficacy of wireless power transmis- sion is a mission is completed, an additional step is needed before the technology is sufficiently tested for use on Earth. A Martian mission (such as [2]) is pro- posed to allow the demonstration of the use of the wireless power transmission technology in support of and proximity to human astronaut operations.

This poster presets a satellite concept intended for use on this Mars mission, to supply power that is need- ed for human habitation and other purposes. This satel- lite is designed to be …


Pattern Recognition For Detecting Failures In Space Solar Power Systems, Allen Mcdermott, Cameron Kerbaugh, Jeremy Straub, Eunjin Kim Apr 2015

Pattern Recognition For Detecting Failures In Space Solar Power Systems, Allen Mcdermott, Cameron Kerbaugh, Jeremy Straub, Eunjin Kim

Jeremy Straub

This poster covers work relating to the use of expert systems and pattern recognition to attempt to identify, detect and prospectively stop patterns of activity that could potentially lead to failure of a space solar power (SSP) system. A database-based expert system has is presented to identify patterns, which can be used to determine whether a power beam could hit a unintend- ed target and potentially cause a calamity. This has been implemented via a facts-rule network via which supplied and collected facts and a rule set is used to de- termine whether the system is operating correctly (from a …


A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh Apr 2015

An Onboard Distributed Multiprocessing System For A Cubesat Spacecraft Created From Gumstix Computer-On-Module Units, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative at the University of North Dakota [1] aims to make ac-cess to space for research and educational purposes easier by enabling the creation of low-cost CubeSats. It is creating the Open Prototype for Educational Nanosats (OPEN), a framework for developing a 1-U CubeSat space-craft with a parts cost of less than $5,000 [2]. The designs [3], documentation and computer code from this will be made publically available to enable the development of programs at other institutions.