Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Kriging

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Efficient Yield Estimation Of Multiband Patch Antennas By Polynomial Chaos-Based Kriging, Leifur Leifsson, Xiaosong Du, Slawomir Koziel Nov 2020

Efficient Yield Estimation Of Multiband Patch Antennas By Polynomial Chaos-Based Kriging, Leifur Leifsson, Xiaosong Du, Slawomir Koziel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Yield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since direct Monte Carlo sampling of accurate physics-based models can be computationally intensive, this work proposes the use of the polynomial chaos–Kriging (PC-Kriging) metamodeling method for fast yield estimation of multiband patch antennas. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel since the PCE is good at capturing the function tendency and Kriging is good at matching the observations at training points. The PC-Kriging method is demonstrated on two analytical cases and two multiband patch antenna cases …


Fast Yield Estimation Of Multi-Band Patch Antennas By Pc-Kriging, Xiaosong Du, Leifur Leifsson, Slawomir Koziel May 2019

Fast Yield Estimation Of Multi-Band Patch Antennas By Pc-Kriging, Xiaosong Du, Leifur Leifsson, Slawomir Koziel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The PC-Kriging metamodeling method is proposed for yield estimation of multi-band patch antennas. PC-Kriging is a combination of polynomial chaos expansion (PCE) and Kriging metamodeling, where PCE is used as a trend function for the Kriging interpolation metamodel. The method is demonstrated on the Ishigami analytical function and a dual-band patch antenna. The PC-Kriging is shown to reach the prescribed accuracy limit with significantly fewer training points than both PCE and Kriging. This translates into considerable computational savings of yield estimation over alternative metamodel-based procedures and direct EM-driven Monte Carlo simulation. The saving are obtained without compromising evaluation reliability.


Multifidelity Modeling Of Ultrasonic Testing Simulations With Cokriging, Leifur Leifsson, Xiaosong Du, Slawomir Koziel Oct 2018

Multifidelity Modeling Of Ultrasonic Testing Simulations With Cokriging, Leifur Leifsson, Xiaosong Du, Slawomir Koziel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multifidelity methods are introduced to the nondestructive evaluation (NDE) of measurement systems. In particular, Cokriging interpolation metamodels of physics-based ultrasonic testing (UT) simulation responses are utilized to accelerate the uncertainty propagation in model-assisted NDE. The proposed approach is applied to a benchmark test case of UT simulations and compared with the current state-of-the-art techniques. The results show that Cokriging captures the physics of the problem well and is able to reduce the computational burden by over one order of magnitude compared to the state of the art. To the best of the author's knowledge, this the first time multifidelity methods …