Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Actuators

Articles 1 - 4 of 4

Full-Text Articles in Aerospace Engineering

Inherent And Model-Form Uncertainty Analysis For Cfd Simulation Of Synthetic Jet Actuators, Daoru Frank Han, Serhat Hosder Jan 2012

Inherent And Model-Form Uncertainty Analysis For Cfd Simulation Of Synthetic Jet Actuators, Daoru Frank Han, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A mixed (aleatory and epistemic) uncertainty quantification (UQ) method was applied to computational uid dynamics (CFD) modeling of a synthetic jet actuator. A test case, (ow over a hump model with synthetic jet actuator control) from the CFDVAL2004 work-shop was selected to apply the Second-Order Probability framework implemented with a stochastic response surface obtained from Quadrature-Based Non-Intrusive Polynomial Chaos (NIPC). Three uncertainty sources were considered: (1) epistemic (model-form) uncertainty in turbulence model, (2) aleatory (inherent) uncertainty in free stream veloc-ity and (3) aleatory uncertainty in actuation frequency. Uncertainties in both long-time averaged and phase averaged quantities were quantified using a …


Uncertainty Quantification Integrated To Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder Sep 2010

Uncertainty Quantification Integrated To Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Point-Collocation Non-intrusive Polynomial Chaos (NIPC) method has been applied to a stochastic synthetic jet actuator problem used as one of the test cases in the CFDVAL2004 workshop to demonstrate the integration of computationally efficient uncertainty quantification to the high-fidelity CFD modeling of synthetic jet actuators. The test case included the simulation of an actuator generating a synthetic jet issued into quiescent air. The Point-Collocation NIPC method is used to quantify the uncertainty in the long-time averaged u and v-velocities at several locations in the flow field due to the uniformly distributed uncertainty introduced in the amplitude and frequency of …


Uncertainty Quantification Integrated To The Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder Jul 2010

Uncertainty Quantification Integrated To The Cfd Modeling Of Synthetic Jet Actuators, Srikanth Adya, Daoru Frank Han, Serhat Hosder

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Point Collocation Non-Intrusive Polynomial Chaos (NIPC) method has been applied to two stochastic synthetic jet actuator problems used as test cases in the CFDVAL2004 workshop to demonstrate the integration of computationally efficient uncertainty quantification to the high-fidelity CFD modeling of synthetic jet actuators. In Case1 where the synthetic jet is issued into quiescent air, the NIPC method is used to quantify the uncertainty in the long-time averaged u and v-velocities at several locations in the flow field, due to the uniformly distributed uncertainty introduced in the amplitude and frequency of the oscillation of the piezo-electric membrane. Fifth order NIPC …


Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan Jan 2005

Optimal Control Of A Class Of One-Dimensional Nonlinear Distributed Parameter Systems With Discrete Actuators, Radhakant Padhi, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems with a finite number of actuators in the spatial domain. Unlike the existing ''approximate-then-design'' and ''design-then-approximate'' techniques, this approach does not use any approximation either of the system dynamics or of the resulting controller. The formulation has more practical significance because one can implement a set of discrete controllers with relative ease. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved through simulations. …