Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Aerospace Engineering

Evaluation Of Direct Diode Laser Deposited Stainless Steel 316l On 4340 Steel Substrate For Aircraft Landing Gear Application, Tian Fu, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Zhiqiang Fan, Syamala Rani Pulugurtha, Jianzhong Ruan, Hsin-Nan Chou Aug 2009

Evaluation Of Direct Diode Laser Deposited Stainless Steel 316l On 4340 Steel Substrate For Aircraft Landing Gear Application, Tian Fu, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Zhiqiang Fan, Syamala Rani Pulugurtha, Jianzhong Ruan, Hsin-Nan Chou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

300M steel is used extensively for aircraft landing gears because of its high strength, ductility and toughness. However, like other high-strength steels, 300M steel is vulnerable to corrosion fatigue and stress corrosion cracking, which can lead to catastrophic consequences in the landing gear. Stainless steels offer a combination of corrosion, wear, and fatigue properties. But for an aircraft landing gear application a higher surface hardness is required. A laser cladding process with fast heating and cooling rates can improve the surface hardness. AISI 4340 steel is used as a lower cost alternative to 300M due to its similar composition. In …


Freeform Extrusion Of High Solids Loading Ceramic Slurries, Part Ii: Extrusion Process Control, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas Aug 2006

Freeform Extrusion Of High Solids Loading Ceramic Slurries, Part Ii: Extrusion Process Control, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Part I of this paper provided a detailed description of a novel fabrication machine for high solids loading ceramic slurry extrusion processes and presented an empirical model of the ceramic extrusion process, viewing ram velocity as the input and extrusion force as the output. A constant extrusion force is desirable as it correlates with a constant material deposition rate and, thus, good part quality. The experimental results used to construct the model demonstrated that a constant ram velocity will not necessarily produce a constant extrusion force. In some instances the extrusion force increased until ram motor skipping occurred, and process …