Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Aerospace Engineering

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa Dec 2021

Developing A Light Curve Simulation Tool For Ground And Space-Based Observations Of Spacecraft And Debris, Andrew T. Ochoa

Master's Theses

A light curve is a plot of brightness versus time of an object. Light curves are dependent on orbit, attitude, surface area, size, and shape of the observed object. Using light curve data, several analysis methods have been developed to derive these parameters. These parameters can be used for tracking orbital debris, monitoring satellite health, and determining the mission of an unknown spacecraft.

This paper discusses the development, verification, and utilization of a tool that simulates light curve data. This tool models ground-based observations, space-based observations, self-shadowing geometry, tumbling debris, and controlled spacecraft. The main output from the tool is …


Optimization Of Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Ryan Yedinak Sep 2021

Optimization Of Interplanetary Transfer Trajectories Using The Invariant Manifolds Of Halo Orbits, Ryan Yedinak

Master's Theses

Traditionally, two-body dynamics have been used to design orbital trajectories for interplanetary missions using a series of Lambert’s transfers and gravity assists. Although these are reliable methods, they have extremely high fuel requirements, especially for missions to outer planets. From an orbital mechanics perspective, three ways of reducing fuel requirements for these types of missions are utilizing low energy transfer trajectories, applying low thrust engine parameters, and implementing orbit optimization techniques.

The goal of this thesis is to combine low energy transfers created from the dynamics of the Circular Restricted Three-Body Problem (CRTBP) with low-thrust orbit optimization techniques to develop …


Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen Aug 2021

Interior Point Optimization Of Low-Thrust Spacecraft Trajectories, Jordan D. Frederiksen

Master's Theses

Low-thrust interplanetary spacecraft trajectory optimization poses a uniquely difficult problem to solve because of the inherent nonlinearities of the dynamics and constraints as well as the large size of the search space of possible solutions. Tools currently exist that optimize low-thrust interplanetary trajectories, but these tools are rarely openly available to the public, and when they are available they require multiple interfaces between multiple different packages. The goal of this work is to present a new piece of low-thrust interplanetary spacecraft trajectory optimization software that is open-source and entirely self-contained so that more people can have access to the ability …


Integral Boundary Layer Methods In Python, Malachi Joseph Edland Aug 2021

Integral Boundary Layer Methods In Python, Malachi Joseph Edland

Master's Theses

This thesis presents a modern approach to two Integral Boundary Layer methods implemented in the Python programming language. This work is based on two 2D boundary layer methods: Thwaites' method for laminar boundary layer flows and Head's method for turbulent boundary layer flows. Several novel enhancements improve the quality and usability of the results. These improvements include: a common ordinary differential equation (ODE) integration framework that generalizes computational implementations of Integral Boundary Layer methods; the use of a dense output Runge-Kutta ODE solver that allows for querying of simulation results at any point with accuracy to the same order as …


A Flat Plate Skin Friction Correlation Including Transition, Jaret M. Wedow Jun 2021

A Flat Plate Skin Friction Correlation Including Transition, Jaret M. Wedow

Master's Theses

Many existing boundary layer models treat transition as a rapid switch from laminar to turbulent flow, with correlations defining properties in each respective region. Natural transition, however, is not always a very spanwise uniform process, with the onset of transition varying somewhat between different streamwise paths of fluid flow. Thus, a spanwise average of natural transition can result in a more gradual, extended transition region than many existing models predict. Modern applications, such as aircraft wings and fuselages, are extremely streamlined and smooth, allowing for natural transition to occur rather than flow tripping to turbulent near the leading edge. Under …


Cultivating Creativity In Aerospace Systems Engineering To Manage Complexity, Kenneth Lucas Dodd Jun 2021

Cultivating Creativity In Aerospace Systems Engineering To Manage Complexity, Kenneth Lucas Dodd

Master's Theses

In recent decades, complexity in aerospace programs has been increasing, leading to large budget and schedule overruns. Many of the risks of complex system development can be attributed to the inadequacy of linear methods when applied to nonlinear domains, i.e., oversimplification in a program amplifies the amount of risk produced when a system behaves unexpectedly. Effectively managing complexity involves responding to the various sources of complexity, whether it appears in the objective behavior of the system itself or in the subjective behavior of the people developing it. Thus, the engineering of complex systems requires nonlinear modeling methods of the system …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett Jun 2021

Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett

Master's Theses

As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, …


Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles Jun 2021

Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles

Master's Theses

Once a satellite has completed its operational period, it must be removed responsibly in order to reduce the risk of impacting other missions. Geostationary Transfer Orbits (GTOs) offer unique challenges when considering disposal of spacecraft, as high eccentricity and orbital energy give rise to unique challenges for spacecraft designers. By leveraging small satellite research and integration techniques, a deployable drag sail module was analyzed that can shorten the expected orbit time of launch vehicle stages in GTO. A tool was developed to efficiently model spacecraft trajectories over long periods of time, which allowed for analysis of an object’s expected lifetime …


Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman Jun 2021

Soarnet, Deep Learning Thermal Detection For Free Flight, Jake T. Tallman

Master's Theses

Thermals are regions of rising hot air formed on the ground through the warming of the surface by the sun. Thermals are commonly used by birds and glider pilots to extend flight duration, increase cross-country distance, and conserve energy. This kind of powerless flight using natural sources of lift is called soaring. Once a thermal is encountered, the pilot flies in circles to keep within the thermal, so gaining altitude before flying off to the next thermal and towards the destination. A single thermal can net a pilot thousands of feet of elevation gain, however estimating thermal locations is not …


Development Of A Cubesat Conceptual Design Tool And Implementation Of The Eps Design Module, Sean K. Nogrady Jun 2021

Development Of A Cubesat Conceptual Design Tool And Implementation Of The Eps Design Module, Sean K. Nogrady

Master's Theses

This thesis is the product of an effort to develop a CubeSat Conceptual Design Tool for the California Polytechnic State University CubeSat Laboratory. Such a tool is necessary due to inefficiencies with the current conceptual design process. It is being developed to increase accessibility, reduce design time, and promote good systems engineering within CubeSat development.

The development of the architecture of a conceptual design tool, the core user-interface element, and the completion of a module for the electrical power subsystem is the focus of this thesis. The architecture is built around different modules to design different subsystems that work in …


Analytical, Numerical, And Computational Methods To Analyze The Time To Empty Open, Closed, And Variable-Topped Inverted Bottles, Callen Schwefler Jun 2021

Analytical, Numerical, And Computational Methods To Analyze The Time To Empty Open, Closed, And Variable-Topped Inverted Bottles, Callen Schwefler

Master's Theses

Recent unexpected experimental observations of the emptying of inverted bottles with perforations has generated interest in modeling and simulation of this phenomenon. It was observed that as a perforation, i.e., a small hole at the "top" of the inverted bottle, is added and enlarged, the overall emptying time first increases to a maximum value and then decreases until it reaches a lower limit. The change in emptying time is associated with a transition from jetting, where only water exits the neck, to glugging, a competition between air and water flows at the neck of the bottle.

This paper develops analytical …


Ram Air-Turbine Of Minimum Drag, Raymond Akagi Mar 2021

Ram Air-Turbine Of Minimum Drag, Raymond Akagi

Master's Theses

The primary motivation for this work was to predict the conditions that would yield minimum drag for a small Ram-Air Turbine used to provide a specified power requirement for a small flight test instrument called the Boundary Layer Data System. Actuator Disk Theory was used to provide an analytical model for this work.

Classic Actuator Disk Theory (CADT) or Froude’s Momentum Theory was initially established for quasi-one-dimensional flows and inviscid fluids to predict the power output, drag, and efficiency of energy-extracting devices as a function of wake and freestream velocities using the laws of Conservations of Mass, Momentum, and Energy. …


Comparing Radiation Shielding Potential Of Liquid Propellants To Water For Application In Space, John Czaplewski Mar 2021

Comparing Radiation Shielding Potential Of Liquid Propellants To Water For Application In Space, John Czaplewski

Master's Theses

The radiation environment in space is a threat that engineers and astronauts need to mitigate as exploration into the solar system expands. Passive shielding involves placing as much material between critical components and the radiation environment as possible. However, with mass and size budgets, it is important to select efficient materials to provide shielding. Currently, NASA and other space agencies plan on using water as a shield against radiation since it is already necessary for human missions. Water has been tested thoroughly and has been proven to be effective. Liquid propellants are needed for every mission and also share similar …


Development Of A Hybrid Particle Continuum Solver, Anthony J. Gay Mar 2021

Development Of A Hybrid Particle Continuum Solver, Anthony J. Gay

Master's Theses

When simulating complex flows, there are some physical situations that exhibit large fluctuations in particle density such as: planetary reentry, ablation due to arcing, rocket exhaust plumes, etc. When simulating these events, a high level of physical accuracy can be achieved with kinetic methods otherwise known as particle methods. However, this high level of physical accuracy requires large amounts of computation time. If the simulated flow is in collisional equilibrium, then less computationally intensive continuum methods, otherwise known as fluid methods, can be utilized. Hybrid Particle-Continuum (HPC) codes attempt to blend particle and fluid solutions in order to reduce computation …


A Method For Visualizing The Structural Complexity Of Organizational Architectures, Jacob Michael B. King Mar 2021

A Method For Visualizing The Structural Complexity Of Organizational Architectures, Jacob Michael B. King

Master's Theses

To achieve a high level of performance and efficiency, contemporary aerospace systems must become increasingly complex. While complexity management traditionally focuses on a product’s components and their interconnectedness, organizational representation in complexity analysis is just as essential. This thesis addresses this organizational aspect of complexity through an Organizational Complexity Metric (OCM) to aid complexity management. The OCM augments Sinha’s structural complexity metric for product architectures into a metric that can be applied to organizations. Utilizing nested numerical design structure matrices (DSMs), a compact visual representation of organizational complexity was developed. Within the nested numerical DSM are existing organizational datasets used …


Development Of An Infrared Thermography System To Measure Boundary Layer Transition In A Low Speed Wind Tunnel Testing Environment, Damien Horton Mar 2021

Development Of An Infrared Thermography System To Measure Boundary Layer Transition In A Low Speed Wind Tunnel Testing Environment, Damien Horton

Master's Theses

The use of infrared thermography for boundary layer detection was evaluated for use in the Cal Poly Low Speed Wind Tunnel (LSWT) and recommendations for the successful use of this technique were developed. In cooperation with Joby Aviation, an infinite wing model was designed, manufactured and tested for use in the LSWT. The wing was designed around a custom airfoil profile specific for this project, where the nearly-flat pressure gradient at a zero pitch angle would delay the chordwise onset of boundary layer transition. Steady-state, RANS numerical simulations predicted the onset of transition to occur at 0.75 x/c for the …