Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Aerospace Engineering

Modeling Of Rotor Wake Vortex Dynamics And Interactions In Non-Homogenous Vertiport Environments, Garrison P. Shaw May 2024

Modeling Of Rotor Wake Vortex Dynamics And Interactions In Non-Homogenous Vertiport Environments, Garrison P. Shaw

Doctoral Dissertations and Master's Theses

The current research serves to analyze and study the effects ground forces can have on the thrust performance of a propeller in multiple different configurations. The current research utilizes an open source Computational Fluid Dynamics (CFD) software known as OpenFOAM to generate calculate and visualize these runs. The model used for this experiment is a hybrid model that employs both a Unsteady Reynolds-Averaged Navier-Stokes (URANS) and a detached eddy simulation using a hybrid Large Eddy Simulation (LES) via a KomegaSSTDDES model. This model serves to save computational time as well as allow for accurate results. The three cases run are …


Development Of Eagle3d Solver For Wall Modeled Les Of Transonic Flows, Spencer Moore Apr 2024

Development Of Eagle3d Solver For Wall Modeled Les Of Transonic Flows, Spencer Moore

Doctoral Dissertations and Master's Theses

Wall modeled Large Eddy Simulation (LES) is an area of interest due to its ability to lower computational costs of LES simulation. Even with the application of wall models, LES still proves to have practicality issues when it comes to use in industry, due to the expertise, time, and computational resources required to get results. A case described by an axisymmetric transonic bump is explored utilizing the Embry-Riddle Aeronautical Universities in house unstructured finite volume multi-element CFD code, Eagle3D. Eagle3D, has been brought to the state of the art and validated against current research using this transonic bump case as …


Prediction & Active Control Of Multi-Rotor Noise, Samuel O. Afari Apr 2023

Prediction & Active Control Of Multi-Rotor Noise, Samuel O. Afari

Doctoral Dissertations and Master's Theses

Significant developments have been made in designing and implementation of Advanced Air Mobility Vehicles (AAMV). However, wider applications in urban areas require addressing several challenges, such as safety and quietness. These vehicles differ from conventional helicopter in that they operate at a relatively lower Reynolds number. More chiefly, they operate with multiples of rotors, which may pose some issues aerodynamically, as well as acoustically. The aim of this research is to first investigate the various noise sources in multi-rotor systems. High-fidelity simulations of two in-line counter-rotating propellers in hover, and in forward flight conditions are performed. Near field flow and …


Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon Jul 2022

Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon

Doctoral Dissertations and Master's Theses

Soaring birds have evolved to fly for long periods of time without flapping their wings. Inspired by the flight of these birds, the proposed thesis presents an experimental investigation focused on wingtip devices designed based on biomimicry. The overarching engineering objective was to reduce the induced drag as a means to improve the fuel efficiency via these experimental wingtips. An associated secondary objective was to establish a method for manufacturing complex structures suitable for wing tunnel testing. A manufacturing technique that involved using composite weaves to reinforce additively manufactured structures was developed. This technique has the potential to reduce manufacturing …


Influence Of Wing Planform Shape On The Effectiveness Of A Fixed-Slot, Yuan Zhao Apr 2022

Influence Of Wing Planform Shape On The Effectiveness Of A Fixed-Slot, Yuan Zhao

Doctoral Dissertations and Master's Theses

This thesis report explores the effect of the Clark-Y wing geometry on lift and drag to use as a reference during aircraft design stage. The different characteristics investigated are fixed slot span, taper ratio, washout, and sweep angle. Plain wings, half slotted wings, and fully slotted wings were built in CATIA with an aspect ratio of 6 and different taper ratio, washout, and sweep angles. Using the CATIA models to generate the 3-D grids in Pointwise. All the simulations were tested in Ansys-Fluent under sea-level conditions with a Reynold number of 609000. The relationships between the aerodynamic characteristics and the …


Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph Jul 2021

Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph

Doctoral Dissertations and Master's Theses

We address the development of a dynamic-soaring capable unmanned aerial vehicle (UAV) optimized for long-duration flight with no on-board power consumption. The UAV’s aerodynamic properties are captured with the integration of variable fidelity aerodynamic analyses. In addition to this, a 6 degree-of-freedom flight simulation environment is designed to include the effects of atmospheric wind conditions. A simple flight control system aids in the development of the dynamic soaring maneuver. A modular design paradigm is adopted for the aircraft dynamics model, which makes it conducive to use the same environment to simulate other aircraft models. Multiple wind-shear models are synthesized to …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …