Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire Aug 2021

Modeling Dewetting, Demixing, And Thermal Effects In Nanoscale Metal Films, Ryan Howard Allaire

Dissertations

Thin film dynamics, particularly on the nanoscale, is a topic of extensive interest. The process by which thin liquids evolve is far from trivial and can lead to dewetting and drop formation. Understanding this process involves not only resolving the fluid mechanical aspects of the problem, but also requires the coupling of other physical processes, including liquid-solid interactions, thermal transport, and dependence of material parameters on temperature and material composition. The focus of this dissertation is on the mathematical modeling and simulation of nanoscale liquid metal films, which are deposited on thermally conductive substrates, liquefied by laser heating, and subsequently …


Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das May 2021

Electric Field Induced Self-Assembly Of Mesoscale Structured Materials And Smart Fluids, Suchandra Das

Dissertations

This dissertation aims to study the forces that drive self-assembly in binary mixtures of particles suspended in liquids and on fluid-liquid interfaces when they are subjected to a uniform electric or magnetic field. Three fluid-particle systems are investigated experimentally and theoretically : (i) Suspensions of dielectric particles in dielectric liquids; (ii) Suspensions of ferromagnetic and diamagnetic particles in ferrofluids; and (iii) Dielectric particles on dielectric fluid-liquid interfaces. The results of these studies are then used to estimate the parameter values needed to assemble materials with desired mesoscale microstructures.

The first fluid-particle system studied is an electrorheological (ER) fluid formed using …


Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …