Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Aerospace Engineering

Control Mapping Methodology For Tailless Morphing-Wing Aircraft, Zachary S. Montgomery Aug 2022

Control Mapping Methodology For Tailless Morphing-Wing Aircraft, Zachary S. Montgomery

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Advanced aircraft designs tend to have several control surfaces or devices that affect the flight of the aircraft. It is difficult or even impossible for a pilot to directly control each of these devices and fly the aircraft well. Therefore, a control mapping logic is needed to take typical pilot commands and map them to what the control devices should do to achieve the pilot’s commands. This work presents a methodology for determining this control mapping logic using two different approaches. The first uses a theoretical approach based on lifting-line theory, while the second leverages computational methods. The methodology consists …


A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman Apr 2022

A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman

Mechanical and Aerospace Engineering Faculty Publications

The impressive maneuverability demonstrated by birds has so far eluded comparably sized uncrewed aerial vehicles (UAVs). Modern studies have shown that birds’ ability to change the shape of their wings and tail in flight, known as morphing, allows birds to actively control their longitudinal and lateral flight characteristics. These advances in our understanding of avian flight paired with advances in UAV manufacturing capabilities and applications has, in part, led to a growing field of researchers studying and developing avian-inspired morphing aircraft. Because avian-inspired morphing bridges at least two distinct fields (biology and engineering), it becomes challenging to compare and contrast …