Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Aerospace Engineering

Thermal Barrier Coating For Carbon Fiber-Reinforced Composite Materials, Heejin Kim, Jungwon Kim, Juhyeong Lee, Min Wook Lee Sep 2021

Thermal Barrier Coating For Carbon Fiber-Reinforced Composite Materials, Heejin Kim, Jungwon Kim, Juhyeong Lee, Min Wook Lee

Mechanical and Aerospace Engineering Faculty Publications

Carbon fiber-reinforced plastic (CFRP) composites are widely employed in lightweight and high performance applications including supercars, aero-vehicles, and space components. However, although carbon fibers are thermally stable, the low thermal endurance of the matrix materials remains a critical problem in terms of the performance of the material. In this study, we proposed a new, Al2O3-based thermal barrier coating (TBC) for the CFRP composites. The TBC comprised α-phase Al2O3 particles with a mean diameter of 9.27 μm. The strong adhesion between the TBC and the CFRP substrate was evaluated using a three point bending …


Lightning Arc Channel Effects On Surface Damage Development On A Prseus Composite Panel: An Experimental Study, Dounia Boushab, Pedram Gharghabi, Juhyeong Lee, Thomas E. Lacy Jr., Charles U. Pittman Jr., Michael S. Mazzola, Alexander Velicki Aug 2021

Lightning Arc Channel Effects On Surface Damage Development On A Prseus Composite Panel: An Experimental Study, Dounia Boushab, Pedram Gharghabi, Juhyeong Lee, Thomas E. Lacy Jr., Charles U. Pittman Jr., Michael S. Mazzola, Alexander Velicki

Mechanical and Aerospace Engineering Faculty Publications

Composite aircraft structures are vulnerable to lightning strike damage due to their relatively low electrical and thermal conductivities. A preceding work has investigated the lightning damage resistance of a carbon-epoxy Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panel. The damage includes intense local damage (i.e., matrix decomposition/sublimation, fiber rupture, delamination) accompanied by widespread surface damage (i.e., distributed fiber rupture and tow splitting) further from the lightning attachment point. This study focuses on investigating the cause of the widespread surface damage. Two possible driving mechanisms are explored: i) magnetically-induced currents and ii) lightning arc-root/channel expansion. …