Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Aerospace Engineering

Development Of Triangular And Tetrahedral Finite Elements For Solutions To Thermoelastic Instabilities Using Hotspotter, Cortney Samuel Leneave Jan 2021

Development Of Triangular And Tetrahedral Finite Elements For Solutions To Thermoelastic Instabilities Using Hotspotter, Cortney Samuel Leneave

Electronic Theses and Dissertations

The objective of the work presented in this thesis is to develop first-order triangular and tetrahedral elements for solutions to Thermoelastic Instabilities (TEI) regarding sliding friction systems in Hotspotter.

Hotspotter software uses a finite element method and an eigenvalue method and is an important tool because currently no other commercial software exists which solves the TEI problem for critical velocities and wave numbers of a system. Hotspotter currently uses quadrilateral and hexahedral elements for two and three dimensional analysis, respectively. Typically, tri and tet elements are used in industry when doing static and dynamic stress analysis. Therefore, the Hotspotter user …


Satellite Constellation Deployment And Management, Joseph Ryan Kopacz Jan 2020

Satellite Constellation Deployment And Management, Joseph Ryan Kopacz

Electronic Theses and Dissertations

This paper will review results and discuss a new method to address the deployment and management of a satellite constellation. The first two chapters will explorer the use of small satellites, and some of the advances in technology that have enabled small spacecraft to maintain modern performance requirements in incredibly small packages.

The third chapter will address the multiple-objective optimization problem for a global persistent coverage constellation of communications spacecraft in Low Earth Orbit. A genetic algorithm was implemented in MATLAB to explore the design space – 288 trillion possibilities – utilizing the Satellite Tool Kit (STK) software developers kit. …


System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha Jan 2017

System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha

Electronic Theses and Dissertations

The advancement in automation and sensory systems in recent years has led to an increase the demand of UAV missions. Due to this increase in demand, the research community has gained interest in investigating UAV performance enhancing systems. Circulation Control (CC), which is an active control flow method used to enhance UAV lift, is a performance enhancing system currently studied. In prior research, experimental studies have shown that Circulation Control wings (CCW) implemented on class-I UAVs can reduce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload capabilities through lift enhancement. Increasing aircraft payload capabilities causes …


A Comprehensive Methodology For Design Of A Circulation Control Small-Scale Unmanned Aircraft, Konstantinos Kanistras Jan 2016

A Comprehensive Methodology For Design Of A Circulation Control Small-Scale Unmanned Aircraft, Konstantinos Kanistras

Electronic Theses and Dissertations

Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent and important for a wide spectrum of civilian and military operations. When focusing on small-scale fixed-wing UAVs, payload, power and energy requirements limit considerably their utilization and flexibility allowing them to complete only those specific missions they are designed for. Circulation Control (CC) is an active flow control method used to produce increased lift over the traditional systems (flaps, slats, etc...) currently in use. This dissertation focuses on the foundations of a comprehensive methodology from design to implementation and experimental testing of Coanda-based Circulation Control Wings (CCW) for unmanned aircraft. The …


Identification Of Geostationary Satellites Using Polarization Data From Unresolved Images, Andy Speicher Jan 2015

Identification Of Geostationary Satellites Using Polarization Data From Unresolved Images, Andy Speicher

Electronic Theses and Dissertations

In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images.

The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved …


Design And Evaluation Of A Propulsion System For Small, Compact, Low-Speed Maneuvering Underwater Vehicles, Florence M. Mbithi Jan 2014

Design And Evaluation Of A Propulsion System For Small, Compact, Low-Speed Maneuvering Underwater Vehicles, Florence M. Mbithi

Electronic Theses and Dissertations

Underwater vehicles used to perform precision inspection and non-destructive evaluation in tightly constrained or delicate underwater environments must be small, have low-speed maneuverability and a smooth streamlined outer shape with no appendages. In this thesis, the design and analysis of a new propulsion system for such underwater vehicles is presented. It consists primarily of a syringe and a plunger driven by a linear actuator and uses different inflow and outflow nozzles to provide continuous propulsive force. A prototype of the proposed propulsion mechanism is built and tested. The practical utility and potential efficacy of the system is demonstrated and assessed …


A Mobile Self-Leveling Landing Platform For Small-Scale Uavs, Stephen Austin Conyers Jan 2014

A Mobile Self-Leveling Landing Platform For Small-Scale Uavs, Stephen Austin Conyers

Electronic Theses and Dissertations

This thesis presents a semi-autonomous mobile self-leveling landing platform designed to launch, recover and re-launch VTOL UAVs without the need for human intervention. The landing platform is rugged, lightweight and inexpensive, making it ideal for civilian applications that require a base station from which a rotorcraft UAV can be launched and recovered on terrain that is normally unsuitable for UAV operations. This landing platform is capable of self-leveling on rough terrain and inclined slopes, and can autonomously operate in remote locations for extended periods of time using large onboard lithium batteries and wireless communication. This thesis discusses the unique design …