Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Aerospace Engineering

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh Dec 2013

Scheduling For A Small Satellite For Remote Sensed Data Collection, Donovan Torgerson, Christoffer Korvalnd, Jeremy Straub, Ronald Marsh

Jeremy Straub

Small satellites, such as CubeSats, serve as excellent platforms for the collection of data that can be supplied to a geographic information system. To serve this need, they require a robust and lightweight task scheduler due to their limited onboard power production capabilities as well as internal space restrictions. Because of these constraints, schedules must be optimized; however, the scheduling optimization process must be performed using limited processing (CPU) power.

Several considerations must be taken into account in order to make a scheduler for these systems. This poster highlights requirements such as inter-dependency of onboard systems, and limited windows of …


Educational Outcomes From The Openorbiter Small Spacecraft Development Program, Jeremy Straub Dec 2013

Educational Outcomes From The Openorbiter Small Spacecraft Development Program, Jeremy Straub

Jeremy Straub

The OpenOrbiter program [1] is developing a low-cost framework for the creation of space-craft by researchers and educators worldwide [8]. In addition to the technical objectives, ed-ucational assessment [2, 3] has also been a key focus. Students working on development of the spacecraft [4] were asked what types of benefits they sought from their participation [5]. The assessment of the attainment of these benefits is ongoing, in conjunction with continued development in pursuit of the crea-tion of a set of designs that can be used to build a spacecraft with a cost of under $5,000 [13] .


Testing And Integration Team Project Management, Tyler Leben, Jeremy Straub, Scott Kerlin Dec 2013

Testing And Integration Team Project Management, Tyler Leben, Jeremy Straub, Scott Kerlin

Jeremy Straub

The Testing and Integration Team plays an integral role in the development of the open source CubeSat known as Open Orbiter. Like any project, the Testing Team’s project can benefit from structure and management to effectively utilize it’s time and resources. CSCI 297 teaches the skills needed to turn a good idea into successful endeavor. By applying skills such as effective planning, setting milestones, dealing with changes and supervising to an actual project, Open Orbiter has transformed from a pipe dream to a real, obtainable goal. Doing this has turned learning about project management into more that just power points …


Openorbiter Payload Software, Tim Whitney, Kyle Goehner, Jeremy Straub, Scott Kerlin Dec 2013

Openorbiter Payload Software, Tim Whitney, Kyle Goehner, Jeremy Straub, Scott Kerlin

Jeremy Straub

The Payload Software team is responsible for developing the image processing and task decomposition systems on the Open Orbiter satellite1. The image processing software performs operations to enhance the quality of the images collected by the onboard camera, specifically, mosaicking, which takes multiple images and stitches them together to make a larger image and super resolution, which takes multiple low resolution images of the same area to produce a higher resolution image2,3,4. The task decomposition part of the system decomposes tasks defined by the user into jobs that then get sent to the operating system to be performed. This system …


Openorbiter Combined Software Work Breakdown Structure, Jeremy Straub, Timothy Whitney, Tyler Leben, Kelton Karboviak, Zach Maguire, Christoffer Korvald, Scott Kerlin Dec 2013

Openorbiter Combined Software Work Breakdown Structure, Jeremy Straub, Timothy Whitney, Tyler Leben, Kelton Karboviak, Zach Maguire, Christoffer Korvald, Scott Kerlin

Jeremy Straub

As part of CSCI 297, students created work breakdown structures for different areas of the OpenOrbiter project’s software groups. In CSCI 207, they learned about all aspects of project management via experiential learning. They acted as project management ‘consultants’ to the OpenOrbiter software teams. To facilitate the creation of the work breakdown structures, they interviewed team leads, attended team meetings and discussed current progress and needs with members of the teams. In some cases, they collected additional information from reference sources and/or spoke with other teams which would be the ‘customer’ of a particular area of the software system. These …


Project Management For The Openorbiter Operating Software Team, Kelton Karboviak, Dayln Limesand, Michael Hlas, Eric Berg, Christoffer Korvald, Jeremy Straub, Ronald Marsh, Scott Kerlin Dec 2013

Project Management For The Openorbiter Operating Software Team, Kelton Karboviak, Dayln Limesand, Michael Hlas, Eric Berg, Christoffer Korvald, Jeremy Straub, Ronald Marsh, Scott Kerlin

Jeremy Straub

OpenOrbiter is producing a 1-U CubeSat spacecraft1 to facilitate the construction of low-cost2 spacecraft by others in the future. The Operating Software team is in charge of designing and creating the software that controls most of the CubeSat’s operations such as image capturing, storage management, and temperature sensing. The project management deliverables that we have worked on as a team are the Project Definition, Work Breakdown Structure, and the Project Schedule. The Project Definition defines exactly what our project team will be developing including, but not limited to, what the team is in charge of developing, what its not in …


Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin Dec 2013

Ground Station Software Team Project Management, Zach Maguire, Marshall Mattingly, Christoffer Korvald, Jeremy Straub, Scott Kerlin

Jeremy Straub

In CSCI 297 class we partake in learning the roles of software team leads and developers. With hands on activities that get us involved in what a real manager of a software team may do such as: defining a project, planning a project, developing a work breakdown structure, estimating the work, developing a project schedule, etc. This work is performed in the context of the OpenOrbiter project which seeks to build a low-cost spacecraft1 that can be produced with a parts budget of approxi-mately $5,0002 by schools worldwide. The ground station software team’s purpose within Open Orbiter project is to …


Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh Dec 2013

Software For Openorbiter, Christoffer Korvald, Jeremy Straub, Scott Kerlin, Ronald Marsh

Jeremy Straub

The software development effort for the OpenOrbiter project consists of four teams: operating software development, payload software development, ground station software development and testing. These teams are designing and developing the software required to create a turn-key spacecraft design1 which can be produced at a price point of under USD $5,000 by faculty, students and researchers world-wide2. Through this process, students are gaining valuable real-world experience3,4 in areas of indicated interest5. Each team is headed by a team lead who is responsible for conducting weekly meetings and organizing the activities of the team. During the Fall, 2013 semester, team leads …


Increasing National Space Engineering Productivity And Educational Opportunities Via Intrepreneurship, Entrepreneurship And Innovation, Jeremy Straub Dec 2013

Increasing National Space Engineering Productivity And Educational Opportunities Via Intrepreneurship, Entrepreneurship And Innovation, Jeremy Straub

Jeremy Straub

Research and educational efforts related to space engineering or requiring access to space face significant startup costs. The cost of developing a 1-U (10 cm × 10 cm × 11 cm) CubeSat from scratch can be approximately $250,000. Those buying a kit must pay amortized vendor development costs on a per-mission basis, creating a lower per-mission barrier. Kit users are also constrained by being unable to make changes to vendor subsystems without incurring substantial redevelopment costs or vendor charges. The Open Prototype for Educational NanoSats (OPEN) is changing this by providing freely available design documents for a 1-U CubeSat class …


A Curriculum-Integrated Small Spacecraft Program For Interdisciplinary Education, Jeremy Straub, Anders Nervold, Josh Berk Sep 2013

A Curriculum-Integrated Small Spacecraft Program For Interdisciplinary Education, Jeremy Straub, Anders Nervold, Josh Berk

Jeremy Straub

Space generates inspiration, aspiration, and passion in many students, traits that are often lacking in the traditional college classroom. By utilizing a meaningful space project with a tangible product, which serves a valuable purpose in the curriculum, instructors can generate passion in their students with regards to the topics being explored. Additionally, it can fuel interest in aerospace science and commerce, guiding more students towards valuable STEM degrees and job opportunities, which can lead to future growth and fresh blood in the aging aerospace employee pool.

OpenOrbiter is a student-run research project at the University of North Dakota that can …


Openorbiter: Analysis Of A Student-Run Space Program, Jeremy Straub Sep 2013

Openorbiter: Analysis Of A Student-Run Space Program, Jeremy Straub

Jeremy Straub

Students at the University of North Dakota, as part of faculty-mentored teams in a student-lead program, are working to broaden participation in humanity's exploration of space. The OpenOrbiter Small Spacecraft Development Initiative (OSSDI) is demonstrating two complementary paradigm-changers. First, the initiative facilitates student involvement in all aspects of a space program, without the preconceptions present in established space activities. Second, it is demonstrating a low-cost framework for small spacecraft development. These combined activities are poised to demonstrate a new way forward for space exploration: combined, they allow risk-taking exuberance and a cost of entry that makes risk-taking exuberance acceptable, even …


The Openorbiter Program: Intrepreneurship, Entrepreneurship And Innovation, Jeremy Straub Feb 2013

The Openorbiter Program: Intrepreneurship, Entrepreneurship And Innovation, Jeremy Straub

Jeremy Straub

The University of North Dakota’s OpenOrbiter program is providing an interdisciplinary learning experience for students from numerous STEM and non-STEM fields. OpenOrbiter allows student participants to experience not just the engineering and other technical aspects of the space program, it also involves students from diverse, non-STEM fields (including communications, entrepreneurship, management, visual arts, public policy and English). Traditional STEM fields such as mathematics, physics, electrical engineering, mechanical engineering, computer science and technology are also well represented. Students from specially programs at the University of North Dakota including atmospheric sciences, Earth System Sciences and Policy, aviation, Space Studies and Air Traffic …