Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Aerospace Engineering

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain Dec 2020

The Effect Of Compaction Temperature And Pressure On Mechanical Properties Of 3d Printed Short Glass Fiber Composites, Pushpashree Jain Ajith Kumar Jain

Mechanical & Aerospace Engineering Theses & Dissertations

Among many thermoplastics that are used in engineering, polyamide 6 (nylon 6) is an extremely versatile engineering thermoplastic. Nylon filled with glass fibers has higher mechanical strength and high wear resistance than general purpose nylon. 3D printed composites, based on fused filament modeling, typically suffer from poor bead-to-bead bonding and relatively high void content, limiting their mechanical properties

This thesis explores the effect of compaction pressure and temperature on improving the mechanical properties of 3D printed composites. Engineering moduli in the printing and transverse to printing direction, as well as ultimate strength were measured using the tensile testing with Digital …


Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn Oct 2020

Finite Element Analysis Investigation Of Hybrid Thin-Ply Composites For Improved Performance Of Aerospace Structures, Alana M. Zahn

Mechanical & Aerospace Engineering Theses & Dissertations

Commercial and private aircraft have a need for strong yet light materials in order to have the most ideal performance possible. This study looks at the use of thin-ply composite materials to improve the performance of aircraft structures by means of weight savings and/or strength increase when compared to laminates that are composed of exclusively standard-ply materials. In order to perform an investigation based solely on finite element analysis, validation efforts were performed using test data from open hole tension, open hole compression, notched tension, and notched compression specimens. Once the models were validated sufficiently, the same modeling practices were …


Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo Aug 2020

Mechanism Of Compaction With Wrinkle Formation During Automatic Stitching Of Dry Fabrics And The Size Effect Of Compression Molded Discontinuous Fiber-Reinforced Composites, Anibal Benjamin Beltran Laredo

Mechanical & Aerospace Engineering Theses & Dissertations

With an ever-increasing demand for composites, more ways of manufacturing them are becoming popular and widely used. Stitching of dry fabrics is an efficient method for improving delamination resistance. Discontinuous fiber reinforced composites can be used as a lightweight alternative material for metals through a process of compression molding, which allows for complex shape manufacturing while offering structural grade mechanical properties.

This study demonstrates how the stitching of dry fabrics can be adapted to more complex surfaces. The consequences of stitching of curvilinear surfaces can result in defect formation. Therefore, to understand the physical formation of possible defects, experimental characterization …


Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders Apr 2020

Through-Thickness Reinforcement And Repair Of Carbon Fiber Based Honeycomb Structures Under Flexure And Tension Of Adhesively Bonded Joints, Aleric Alden Sanders

Mechanical & Aerospace Engineering Theses & Dissertations

Repair and reinforcement of composite honeycomb structures is an area of concern as higher demands are being placed on high strength, lightweight structural materials, such as carbon fiber reinforced plastics and corresponding honeycomb structures. A common issue with these structures is when a delamination in the facesheet may form and spread, leading to a failure scenario. An investigation of adding a through thickness reinforcement (TTR) to these structures at the sample level that undergo four-point-bending, tension, and joining methods is conducted throughout this thesis. The embedding of pultruded carbon fiber rods is found to be an ideal addition to composite …


Effects Of Automated Fiber Placement On High Strain Rate Compressive Response Of Advanced Composites, Alexander Trochez Jul 2018

Effects Of Automated Fiber Placement On High Strain Rate Compressive Response Of Advanced Composites, Alexander Trochez

Mechanical & Aerospace Engineering Theses & Dissertations

Automated Fiber Placement (AFP) technology shows great promise in manufacturing carbon fiber composite structures. However, intermittent defects occur in the process that can affect the overall mechanical performance of the structure. The aim of this work is to investigate the effects of deliberately placed principal defects (Gap, Overlap, and Fold) on the compressive response under quasistatic (strain rate ~10-3 s-1) and dynamic (strain rate ~103 s-1) loading conditions. The controlled defects were placed at the laminate level in different orientations and depths. High strain rate compression experiments were conducted using a split Hopkinson pressure bar (SHPB) …


A Comparison Of Microstructure And Uniaxial Compressive Response Of Ice-Templated Porous Alumina Scaffolds Fabricated From Two Different Particle Sizes, Nikhil D. Dhavale Jul 2016

A Comparison Of Microstructure And Uniaxial Compressive Response Of Ice-Templated Porous Alumina Scaffolds Fabricated From Two Different Particle Sizes, Nikhil D. Dhavale

Mechanical & Aerospace Engineering Theses & Dissertations

Development of bio-inspired highly porous (>50 vol.%) cellular ceramics is crucial to meet the demand of high-performance lightweight and damage-tolerant materials for a number of cutting-edge applications including impact energy absorption, biomedical implants, and energy storage. A key design feature that is observed in many natural materials (e.g., nacre, bamboo, wood, etc.) is the presence of hierarchical microstructure that results in an excellent synergy of various material properties, which are otherwise considered as mutually exclusive in current paradigm of materials design. To this end, development of multilayered, interconnected and anisotropic cellular ceramics could benefit the aforementioned applications. However, mimicking …


Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia Jul 1993

Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia

Mechanical & Aerospace Engineering Theses & Dissertations

A new composite damping material is investigated, which consists of a viscoelastic matrix and high elastic modulus fiber inclusions. This fiber enhanced viscoelastic damping polymer is intended to be applied to light-weight flexible structures as surface treatment for passive vibration control. A desirable packing geometry for the composite material is proposed, which is expected to produce maximum shear strain in the viscoelastic damping matrix. Subsequently, a micromechanical model is established in which the effect of fiber segment length and relative motion between neighboring fibers are taken into account. Based on this model, closed form expressions for the effective storage and …


Curing And Flow Of Thermosetting Resins For Composite Materials Pultrusion, Howard L. Price Jr. Apr 1979

Curing And Flow Of Thermosetting Resins For Composite Materials Pultrusion, Howard L. Price Jr.

Mechanical & Aerospace Engineering Theses & Dissertations

Fibrous composite materials for mechanical and structural applications often are expensive due to high labor costs. One economical way of making composites is pultrusion, a manufacturing process in which resin-impregnated fibers are pulled at a constant speed through a heated die which shapes the resin-fiber mass and cures the resin. Most of the work which has been done on the process has been of an empirical nature, with limited understanding of the process principles. Most of the experience with pultrusion has been gained with polyester resins and glass fibers. Very little experience has been gained with higher performance, more costly …