Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Systems Engineering and Multidisciplinary Design Optimization

Old Dominion University

Articles 1 - 30 of 30

Full-Text Articles in Aerospace Engineering

Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey Aug 2023

Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey

Mechanical & Aerospace Engineering Theses & Dissertations

Magnetic Suspension and Balance Systems (MSBS) allow for static, forced oscillation and free to oscillate dynamic stability testing in a wind tunnel without the need for a physical support. The objectives of study are to assist in the application of the free to oscillate testing method in an MSBS to determine dynamic stability characteristics for various re-entry capsule designs.

This thesis discusses the development and testing of a launching method called the grabber for use in the MSBS Subsonic Wind Tunnel at NASA Langley Research Center. Aerodynamic tests were run to support the use of this method and compare the …


Critical Space Infrastructure: A Complex System Governance Perspective, Adrian V. Gheorghe, James C. Pyne, Joseph Sisti, Charles B. Keating, Polinpapilinho F. Katina, William Edmonson Jan 2023

Critical Space Infrastructure: A Complex System Governance Perspective, Adrian V. Gheorghe, James C. Pyne, Joseph Sisti, Charles B. Keating, Polinpapilinho F. Katina, William Edmonson

Engineering Management & Systems Engineering Faculty Publications

This paper examines the applicability of Complex System Governance (CSG) to advance the Critical Space Infrastructure field (CSI). CSI encompasses space related hardware, workforce, environment, facilities, and businesses that are necessary for societal well-being. CSI is increasing in importance as more societal serving systems are becoming dependent on CSI to operate. Given this increasing dependence on CSI, societal sectors are increasingly at risk should something go wrong with CSI upon which they depend. CSI has been developing is a fragmented way and lacks coherent organization. CSG is focused on design, execution, and evolution of system functions that provide for communications, …


Strengthening Urban Resilience: Understanding The Interdependencies Of Outer Space And Strategic Planning For Sustainable Smart Environments, Ulpia-Elena Botezatu, Olga Bucovetchi, Adrian V. Gheorghe, Radu D. Stanciu Jan 2023

Strengthening Urban Resilience: Understanding The Interdependencies Of Outer Space And Strategic Planning For Sustainable Smart Environments, Ulpia-Elena Botezatu, Olga Bucovetchi, Adrian V. Gheorghe, Radu D. Stanciu

Engineering Management & Systems Engineering Faculty Publications

The conventional approach to urban planning has predominantly focused on horizontal dimensions, disregarding the potential risks originating from outer space. This paper aims to initiate a discourse on the vertical dimension of cities, which is influenced by outer space, as an essential element of strategic urban planning. Through an examination of a highly disruptive incident in outer space involving a collision between the Iridium 33 and Cosmos 2251 satellites, this article elucidates the intricate interdependencies between urban areas and outer space infrastructure and services. Leveraging the principles of critical infrastructure protection, which bridge the urban and outer space domains, and …


Smart Manufacturing—Theories, Methods, And Applications, Zhuming Bi, Lida Xu, Puren Ouyang Aug 2022

Smart Manufacturing—Theories, Methods, And Applications, Zhuming Bi, Lida Xu, Puren Ouyang

Information Technology & Decision Sciences Faculty Publications

(First paragraph) Smart manufacturing (SM) distinguishes itself from other system paradigms by introducing ‘smartness’ as a measure to a manufacturing system; however, researchers in different domains have different expectations of system smartness from their own perspectives. In this Special Issue (SI), SM refers to a system paradigm where digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the internet to expand system capabilities, (3) supporting data-driven decision making at all domains and levels of businesses, or (4) reconfiguring systems to adapt changes and uncertainties in dynamic environments. …


The State Of The Art Of Information Integration In Space Applications, Zhuming Bi, K. L. Yung, Andrew W.H. Ip., Yuk Ming Tang, Chris W.J. Zhang, Li Da Xu Jan 2022

The State Of The Art Of Information Integration In Space Applications, Zhuming Bi, K. L. Yung, Andrew W.H. Ip., Yuk Ming Tang, Chris W.J. Zhang, Li Da Xu

Information Technology & Decision Sciences Faculty Publications

This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and …


A Model-Based Systems Engineering Approach To E-Vtol Aircraft And Airspace Infrastructure Design For Urban Air Mobility, Heidi Selina Glaudel Apr 2021

A Model-Based Systems Engineering Approach To E-Vtol Aircraft And Airspace Infrastructure Design For Urban Air Mobility, Heidi Selina Glaudel

Mechanical & Aerospace Engineering Theses & Dissertations

This paper serves to contribute to Model-Based Systems Engineering (MBSE) by following the NASA Systems Engineering Handbook framework for a Systems Engineering (SE) design approach to an Electric Vertical Takeoff and Landing (e-VTOL) aircraft and the incorporating airspace infrastructure. The focus of this study is, by using the MBSE model created, to capture the technical requirements definition and design intent of the vehicle and airspace inclusive of community specific knowledge derived from the Federal Aviation Administration (FAA) NextGen Urban Air Mobility (UAM) Concept of Operations (ConOps) version 1.0. The stakeholder requirements derived from the FAA UAM NextGen ConOps will form …


Influence Of The Inherent Safety Principles On Quantitative Risk In Process Industry: Application Of Genetic Algorithm Process Optimization (Gapo), Mehdi Jahangiri, Abolfazl Moghadasi, Mojtaba Kamalinia, Farid Sadeghianjahromi, Sean Banaee Jan 2021

Influence Of The Inherent Safety Principles On Quantitative Risk In Process Industry: Application Of Genetic Algorithm Process Optimization (Gapo), Mehdi Jahangiri, Abolfazl Moghadasi, Mojtaba Kamalinia, Farid Sadeghianjahromi, Sean Banaee

Community & Environmental Health Faculty Publications

Inherent safety (IS) refers to a set of measures that enhance the safety level of processes and equipment, rendering additional equipment and/or add-ons. The early design phase of processes is suited best for implementation of IS strategies as some of such strategies either are impossible to be implemented at the operation phase or substantially increase costs. The purpose of this study is to present a new approach called genetic algorithm process optimization (GAPO), by which processes can be made inherently safer even at the operation phase. This study simulates the IS principle, assessing its impact on quantitative risk and the …


Hybrid Models As Transdisciplinary Research Enablers, Andreas Tolk, Alison Harper, Navonil Mustafee Jan 2021

Hybrid Models As Transdisciplinary Research Enablers, Andreas Tolk, Alison Harper, Navonil Mustafee

Computational Modeling & Simulation Engineering Faculty Publications

Modelling and simulation (M&S) techniques are frequently used in Operations Research (OR) to aid decision-making. With growing complexity of systems to be modelled, an increasing number of studies now apply multiple M&S techniques or hybrid simulation (HS) to represent the underlying system of interest. A parallel but related theme of research is extending the HS approach to include the development of hybrid models (HM). HM extends the M&S discipline by combining theories, methods and tools from across disciplines and applying multidisciplinary, interdisciplinary and transdisciplinary solutions to practice. In the broader OR literature, there are numerous examples of cross-disciplinary approaches in …


Spacecraft Informatics, K. L. Yung, Lida Xu, Chris Zhang Jan 2021

Spacecraft Informatics, K. L. Yung, Lida Xu, Chris Zhang

Information Technology & Decision Sciences Faculty Publications

No abstract provided.


Model Based Systems Engineering For A Venture Class Launch Facility, Walter Mcgee Taraila Nov 2020

Model Based Systems Engineering For A Venture Class Launch Facility, Walter Mcgee Taraila

Mechanical & Aerospace Engineering Theses & Dissertations

A study of Model-Based Systems Engineering (MBSE) applied to a small-lift launch facility is presented. The research uses Systems Modeling Language (SysML) products and functional diagrams to document the structure, controls, electrical power, hydraulic, safety mechanisms, software, and fluid ground systems on a launch pad. The research is motivated by the need to design complex systems with an unambiguous understanding that improves communication, quality, productivity, and reduces risk. A model is developed following the ISO/IEC-15288 technical process framework. The stakeholder requirements are defined and analyzed to provide traceability to individual systems and subsystems. An architectural design is realized and implemented …


Work-In-Progress: Augmented Reality System For Vehicle Health Diagnostics And Maintenance, Yuzhong Shen, Anthony W. Dean, Rafael Landaeta Jun 2020

Work-In-Progress: Augmented Reality System For Vehicle Health Diagnostics And Maintenance, Yuzhong Shen, Anthony W. Dean, Rafael Landaeta

Electrical & Computer Engineering Faculty Publications

This paper discusses undergraduate research to develop an augmented reality (AR) system for diagnostics and maintenance of the Joint Light Tactical Vehicle (JLTV) employed by U.S. Army and U.S. Marine Corps. The JLTV’s diagnostic information will be accessed by attaching a Bluetooth adaptor (Ford Reference Vehicle Interface) to JLTV’s On-board diagnostics (OBD) system. The proposed AR system will be developed for mobile devices (Android and iOS tablets and phones) and it communicates with the JLTV’s OBD via Bluetooth. The AR application will contain a simplistic user interface that reads diagnostic data from the JLTV, shows vehicle sensors, and allows users …


Toward Adjoint-Based Aeroacoustic Optimization For Propeller And Rotorcraft Applications, Ramiz Ö. Içke, Oktay Baysal, Andy Moy, Leonard V. Lopes, Beckett Zhou, Boris Diskin Jan 2020

Toward Adjoint-Based Aeroacoustic Optimization For Propeller And Rotorcraft Applications, Ramiz Ö. Içke, Oktay Baysal, Andy Moy, Leonard V. Lopes, Beckett Zhou, Boris Diskin

Mechanical & Aerospace Engineering Faculty Publications

The goal of the present project is to build a multidisciplinary, rapid, robust, and accurate computational tool to optimize wing-mounted propeller designs. The full Farassat’s formulation F1A for aeroacoustic analysis is implemented in the open-source software SU2. This extension enables the prediction of far-field noise generated by moving sources. The formulation is verified, for a stationary and rotating sphere in a wind tunnel and for a tiltrotor in forward flight, by comparing the acoustic predictions of SU2 with the predictions computed by NASA’s aeroacoustics code ANOPP2. The algorithmic differentiation capability of SU2 provides discretely consistent, adjoint-based sensitivity analysis for this …


Investigating The Numerical Stability Of Using An Impedance Boundary Condition To Model Broadband Noise Scattering With Acoustic Liners, Michelle E. Rodio, Fang Q. Hu, Douglas M. Nark Jan 2020

Investigating The Numerical Stability Of Using An Impedance Boundary Condition To Model Broadband Noise Scattering With Acoustic Liners, Michelle E. Rodio, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

Reducing aircraft noise is a major objective in the field of computational aeroacoustics. When designing next generation quiet aircraft, it is important to be able to accurately and efficiently predict the acoustic scattering by an aircraft body from a given noise source. Acoustic liners are an effective tool for achieving aircraft noise reduction and are characterized by a frequency-dependent impedance value. Converted into the time-domain using Fourier transforms, an impedance boundary condition can be used to simulate the acoustic wave scattering by geometric bodies treated with acoustic liners. A Broadband Impedance Model will be discussed in which the liner impedance …


New Dimensions For A Challenging Security Environment: Growing Exposure To Critical Space Infrastructure Disruption Risk, Adrian V. Gheorghe, Alexandru Georgescu, Olga Bucovetchi, Marilena Lazăr, Cezar Scarlat Jan 2018

New Dimensions For A Challenging Security Environment: Growing Exposure To Critical Space Infrastructure Disruption Risk, Adrian V. Gheorghe, Alexandru Georgescu, Olga Bucovetchi, Marilena Lazăr, Cezar Scarlat

Engineering Management & Systems Engineering Faculty Publications

Space systems have become a key enabler for a wide variety of applications that are vital to the functioning of advanced societies. The trend is one of quantitative and qualitative increase of this dependence, so much so that space systems have been described as a new example of critical infrastructure. This article argues that the existence of critical space infrastructures implies the emergence of a new category of disasters related to disruption risks. We inventory those risks and make policy recommendations for what is, ultimately, a resilience governance issue.


Response Surface Optimization Of Electron Beam Freeform Fabrication Depositions Using Design Of Experiments, Patricia A. Quigley Jul 2012

Response Surface Optimization Of Electron Beam Freeform Fabrication Depositions Using Design Of Experiments, Patricia A. Quigley

Engineering Management & Systems Engineering Theses & Dissertations

The Electron Beam Freeform Fabrication (EBF3 ) System is a material depositing, layer additive technique that produces three dimensional (3D) parts out of a wide range of metals in high vacuum, using an electron beam and wire feedstock. Screening deposition trials on a titanium alloy, Ti-6Al-4V, at the National Aeronautics Space Administration (NASA) revealed selective vaporization of the aluminum content of linear prototypes when subjected to chemical analysis. In this study, the aluminum content, bead height and bead width output responses were analyzed from a systematic study of the effects that the interactions of the EBF3 processing parameters …


Enhancement Technique For Aerial Images, Sertan Erkanli, Ahmet Gungor Pakfiliz, Jiang Li Jan 2011

Enhancement Technique For Aerial Images, Sertan Erkanli, Ahmet Gungor Pakfiliz, Jiang Li

Electrical & Computer Engineering Faculty Publications

Recently, we proposed an enhancement technique for uniformly and non-uniformly illuminated dark images that provides high color accuracy and better balance between the luminance and the contrast in images to improve the visual representations of digital images. In this paper we define an improved version of the proposed algorithm to enhance aerial images in order to reduce the gap between direct observation of a scene and its recorded image.


Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray Jan 2008

Towards A Metric For The Assessment Of Safety Critical Control Systems, Oscar R. Gonzalez, Jorge R. Chavez-Fuentes, W. Steven Gray

Electrical & Computer Engineering Faculty Publications

There is a need for better integration of the fault tolerant and the control designs for safety critical systems such as aircraft. The dependability of current designs is assessed primarily with measures of the interconnection of fault tolerant components: the reliability function and the mean time to failure. These measures do not directly take into account the interaction of the fault tolerant components with the dynamics of the aircraft. In this paper, a first step to better integrate these designs is made. It is based on the observation that unstable systems are intrinsically unreliable and that a necessary condition for …


Assessment Of Preliminary Design Approaches For Metallic Stiffened Cylindrical Shell Instability Problems, Vicki Owen Britt Apr 2007

Assessment Of Preliminary Design Approaches For Metallic Stiffened Cylindrical Shell Instability Problems, Vicki Owen Britt

Mechanical & Aerospace Engineering Theses & Dissertations

A preliminary design tool for metallic stiffened fuselage cylindrical panels subjected to longitudinal compression has been developed and validated by comparison to test results. Several methodologies for stiffened panel buckling and failure predictions were examined and evaluated. An appropriate level of analysis fidelity was determined for different failure modes and design details. Results from panel tests conducted to verify analytical methods used to design the Gulfstream V aircraft were presented. The panels were representative of four general skin/stringer configurations on the aircraft. Finite Element analyses and standard analytical methods were used to predict panel failure loads. The accuracy of the …


Improving Efficiency In Engineering Design Using Augmented D-Optimal Designs 'Synthetic Jet' Design Optimization Study, Fatih Erdogan Apr 2006

Improving Efficiency In Engineering Design Using Augmented D-Optimal Designs 'Synthetic Jet' Design Optimization Study, Fatih Erdogan

Engineering Management & Systems Engineering Theses & Dissertations

The purpose of this thesis is to study the efficiency of several "design of experiments" (DOE) approaches used for the analysis and optimization of engineering designs. A literature review is conducted to study various "design of experiments" methods and the advantages and limitations of each method are discussed.

As an application, Augmented D-Optimal designs are utilized for a design study of 'synthetic jet'.

With the objective of improving efficiency and providing a minimum point experimental design model, computer-aided D-optimal method is preferred for this study. For setting up the design of the experiments and for performing the analysis of results, …


Performance Analysis And Validation Of A Recoverable Flight Control System In A Simulated Neutron Environment, Hong Zhang, W. Steven Gray, Oscar R. Gonzalez Jan 2005

Performance Analysis And Validation Of A Recoverable Flight Control System In A Simulated Neutron Environment, Hong Zhang, W. Steven Gray, Oscar R. Gonzalez

Electrical & Computer Engineering Faculty Publications

This paper introduces a class of stochastic hybrid models for the analysis of closed-loop control systems implemented with NASA's Recoverable Computer System. Such Recoverable Computer Systems have been proposed to insure reliable control performance in harsh environments. The stochastic hybrid models consist of either a stochastic finite-state automaton or a finite-state machine driven by a Markov input, which in turn drives a switched linear discrete-time dynamical system. Their stability and output tracking performance are analyzed using an extension of the existing theory for Markov jump-linear systems. For illustration, a stochastic hybrid model is used to calculate the tracking error performance …


Calibrating Expert Assessments Of Advanced Aerospace Technology Adoption Impact, Bruce A. Conway Jul 2003

Calibrating Expert Assessments Of Advanced Aerospace Technology Adoption Impact, Bruce A. Conway

Engineering Management & Systems Engineering Theses & Dissertations

This dissertation describes the development of expert judgment calibration methodology as part of elicitation of the expert judgments to assist in the task of quantifying parameter uncertainty for proposed new aerospace vehicles. From previous work, it has been shown that experts in the field of aerospace systems design and development can provide valuable input into the sizing and conceptual design of future space launch vehicles employing advanced technology. In particular (and of specific interest in this case), assessment of operations and support cost implications of adopting proposed new technology is frequently asked of the experts. Often the input consisting of …


Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis Jan 2002

Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis

Mathematics & Statistics Faculty Publications

Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from …


Optimal Aeroelastic Vehicle Sensor Placement For Root Migration Flight Control Applications, Abdul Ghafoor Al-Shenhabi Jul 2001

Optimal Aeroelastic Vehicle Sensor Placement For Root Migration Flight Control Applications, Abdul Ghafoor Al-Shenhabi

Mechanical & Aerospace Engineering Theses & Dissertations

An important step in control design for elastic systems is the determination of the number and location of control system components, namely sensors. The number and placement of sensors can be critical to the robust functioning of active control systems, especially when the system of interest is a large high-speed aeroelastic vehicle. The position of the sensors affects not only system stability, but also the performance of the closed-loop system. In this dissertation, a new approach for sensor placement in the integrated rigid and vibrational control of flexible aircraft structures is developed. Traditional rigid-body augmentation objectives are addressed indirectly through …


An Integrated Risk Analysis Methodology In A Multidisciplinary Design Environment, Katrina R. Hampton Jan 2001

An Integrated Risk Analysis Methodology In A Multidisciplinary Design Environment, Katrina R. Hampton

Engineering Management & Systems Engineering Theses & Dissertations

Design of complex, one-of-a-kind systems, such as space transportation systems, is characterized by high uncertainty and, consequently, high risk. It is necessary to account for these uncertainties in the design process to produce systems that are more reliable. Systems designed by including uncertainties and managing them, as well, are more robust and less prone to poor operations as a result of parameter variability.

The quantification, analysis and mitigation of uncertainties are challenging tasks as many systems lack historical data. In such an environment, risk or uncertainty quantification becomes subjective because input data is based on professional judgment. Additionally, there are …


Approximation Model Building For Reliability & Maintainability Characteristics Of Reusable Launch Vehicles, Resit Unal, W. Douglas Morris, Nancy H. White, Roger A. Lepsch, Richard W. Brown Jan 2000

Approximation Model Building For Reliability & Maintainability Characteristics Of Reusable Launch Vehicles, Resit Unal, W. Douglas Morris, Nancy H. White, Roger A. Lepsch, Richard W. Brown

Engineering Management & Systems Engineering Faculty Publications

This paper describes the development of parametric models for estimating operational reliability and maintainability characteristics for reusable launch vehicle concepts, based on vehicle size and technology support level. A reliability and maintainability analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational reliability and maintainability characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary design optimization.


Studies Related To The Design Of A Magnetic Suspension And Balance System For An Ultra-High Reynolds Number Flow Facility, Oscar Magno Michael Gomeiz Jan 1999

Studies Related To The Design Of A Magnetic Suspension And Balance System For An Ultra-High Reynolds Number Flow Facility, Oscar Magno Michael Gomeiz

Mechanical & Aerospace Engineering Theses & Dissertations

The basic design principles for a magnetic suspension and balance system applied to the test section of an ultra-high Reynolds number facility are defined. The design of the cross-sectional area to be used in the test section is analyzed. The parameters of the permanent magnet to be used in the model inside the test section are investigated. The testing of magnetic fields at the center of a test pipe and validation of data by computer finite element analysis is described with the purpose of finding common results. The performance of the magnet configuration is evaluated with relation to the magnetic …


Setpoint Tracking Predictive Control In Chemical Processes Based On System Identification, Sinchai Chinvorarat Jan 1999

Setpoint Tracking Predictive Control In Chemical Processes Based On System Identification, Sinchai Chinvorarat

Mechanical & Aerospace Engineering Theses & Dissertations

A Kraft recovery boiler in a pulp-paper mill provides a means for recovery of the heat energy in spent liquor and recovery of inorganic chemicals while controlling emissions. These processes are carried out in a combined chemical recovery unit and steam boiler that is fired with concentrated black liquor and which produces molten smelt. Since the recovery boiler is considered to be an essential part of the pulp-paper mill in terms of energy resources, the performance of the recovery boiler has to be controlled to achieve the highest efficiency under unexpected disturbances.

This dissertation presents a new approach for combining …


Input Design For Systems Under Identification Using Indirect And Direct Methods, Marco P. Schoen Mar 1997

Input Design For Systems Under Identification Using Indirect And Direct Methods, Marco P. Schoen

Mechanical & Aerospace Engineering Theses & Dissertations

The motivation for system identification can be manifold. In this work, the provocation to identify unknown system characteristics is derived from the control engineering point of view. That is, one intends to design a control strategy based on the identified system properties. The used system identification methods are the Open-Loop Kalman filter System Identification method (OKID) and the Closed-Loop System Identification method (CLID). It is shown that the quantitative largest error of the system identification is given by its model representation, that is the attempt to describe a system with model parameters which poses a linear relationship with the input/output …


Design And Implementation Of Fuzzy Logic Controllers. Thesis Final Report, 27 July 1992 - 1 January 1993, Osama A. Abihana, Oscar R. Gonzalez Jan 1993

Design And Implementation Of Fuzzy Logic Controllers. Thesis Final Report, 27 July 1992 - 1 January 1993, Osama A. Abihana, Oscar R. Gonzalez

Electrical & Computer Engineering Faculty Publications

The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design …


Theoretical Results Supporting The Use Of Passive Damping As Augmentation To The Active Control Of Flexible Structures, Joseph Vincent Harrell Jan 1993

Theoretical Results Supporting The Use Of Passive Damping As Augmentation To The Active Control Of Flexible Structures, Joseph Vincent Harrell

Mechanical & Aerospace Engineering Theses & Dissertations

One challenge of modern control technology is how to control a flexible structure with accuracy, speed, and economy of effort. Controlling a structure with many degrees of freedom by purely active means implies the implementation of inordinate sensors and actuators and creates the need for numerous calculations that must be done instantly. Experiments have shown that practical structures under active control alone can suffer instabilities due to modal vibrations beyond the bandwidth of the active controller. Furthermore, if there is a high degree of model uncertainty, instabilities can be produced by inputs of modal vibrations not occurring in the system …