Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Space Vehicles

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 86

Full-Text Articles in Aerospace Engineering

Martian Atmospheric Rover Simulation (M.A.R.S.), Matt Berard, Shelby Beddard, Alexander Brunette, Emma Conti, Collin Duke, Delaney Novak, Keelin Weaver Apr 2024

Martian Atmospheric Rover Simulation (M.A.R.S.), Matt Berard, Shelby Beddard, Alexander Brunette, Emma Conti, Collin Duke, Delaney Novak, Keelin Weaver

Aerospace, Physics, and Space Science Student Publications

While rovers have been used by various agencies to explore Mars, their travel is limited by terrain obstacles, which may prevent mission completion. Creating a vehicle equipped with both driving and flight capabilities would allow greater range of motion on extraterrestrial planets. Integrating the technology for both transportation modes into one rover allows for efficiency and advancements in technological and planetary research.


Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro Jan 2024

Immersive Framework For Designing Trajectories Using Augmented Reality, Joseph Anderson, Leo Materne, Karis Cooks, Michelle Aros, Jaia Huggins, Jesika Geliga-Torres, Kamden Kuykendall, David Canales, Barbara Chaparro

Publications

The intuitive interaction capabilities of augmented reality make it ideal for solving complex 3D problems that require complex spatial representations, which is key for astrodynamics and space mission planning. By implementing common and complex orbital mechanics algorithms in augmented reality, a hands-on method for designing orbit solutions and spacecraft missions is created. This effort explores the aforementioned implementation with the Microsoft Hololens 2 as well as its applications in industry and academia. Furthermore, a human-centered design process and study are utilized to ensure the tool is user-friendly while maintaining accuracy and applicability to higher-fidelity problems.


Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Nov 2023

Six-Degree-Of-Freedom Optimal Feedback Control Of Pinpoint Landing Using Deep Neural Networks, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

Machine learning regression techniques have shown success at feedback control to perform near-optimal pinpoint landings for low fidelity formulations (e.g. 3 degree-of-freedom). Trajectories from these low-fidelity landing formulations have been used in imitation learning techniques to train deep neural network policies to replicate these optimal landings in closed loop. This study details the development of a near-optimal, neural network feedback controller for a 6 degree-of-freedom pinpoint landing system. To model disturbances, the problem is cast as either a multi-phase optimal control problem or a triple single-phase optimal control problem to generate examples of optimal control through the presence of disturbances. …


Orbital Debris Mitigation: Exploring Cubesat Drag Sail Technology, Robinson Raphael Oct 2023

Orbital Debris Mitigation: Exploring Cubesat Drag Sail Technology, Robinson Raphael

Student Works

In an era marked by remarkable advancements in space exploration and research, the advent of satellite technology has contributed accordingly to the lives of people here on Earth. Through applications that tie into broadband connectivity, weather forecasting, disaster management, etc., the occupancy in orbital domains like Low-Earth Orbit (LEO) only continues to grow. However, the presence of orbital debris emerges as a significant concern, posing threats to both operational satellites and future space missions. Resulting as a consequence due to decades of activities since the launch of Sputnik 1 in 1957, as more countries ventured into space so did the …


State Space Modeling And Estimation Of Flexible Structure Using The Theory Of Functional Connections, Carlo Lombardi, Riccardo Bevilacqua Oct 2023

State Space Modeling And Estimation Of Flexible Structure Using The Theory Of Functional Connections, Carlo Lombardi, Riccardo Bevilacqua

Student Works

In this work, we present a novel method to model the dynamics of a continuous structure based on measurements taken at discrete points. The method is conceived to provide new instruments to address the problem of flexible dynamics modeling in a spacecraft, where an effective mathematical representation of the non-rigid behavior of the is of critical importance in the design of an effective and reliable attitude estimation and control system. Both the measurements and the model that describes the structure can be affected by uncertainty. The purpose of the developed method is to estimate the position and the velocity of …


Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua Oct 2023

Stability Of Deep Neural Networks For Feedback-Optimal Pinpoint Landings, Omkar S. Mulekar, Hancheol Cho, Riccardo Bevilacqua

Student Works

The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network …


Development Of User Interface And Testing Harness, Jacob Amezquita, William Albertini Oct 2023

Development Of User Interface And Testing Harness, Jacob Amezquita, William Albertini

College of Engineering Summer Undergraduate Research Program

No abstract provided.


Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon Oct 2023

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Enrique Mendoza Zambrano, Riccardo Bevilacqua Jan 2023

Solar Sailing Adaptive Control Using Integral Concurrent Learning For Solar Flux Estimation, Luis Enrique Mendoza Zambrano, Riccardo Bevilacqua

Student Works

In the interest of exploiting natural forces for propellant-less spacecraft missions, this investigation proposes an adaptive control strategy to account for unknown parameters in the dynamic modeling of a reflectivity-controlled solar sail spacecraft. A Lyapunov-based control law along with integral concurrent learning is suggested to accomplish and prove global exponential tracking of the estimated parameters and states of interest, without satisfying the common persistence of excitation condition, which in most nonlinear systems cannot be guaranteed a priori. This involves estimating the solar flux or irradiance from the Sun to account for uncertainty and variation over time in this value. To …


Dual Quaternion Relative Dynamics For Gravity Recovery Missions, Ryan Kinzie, Riccardo Bevilacqua, Seo Dongeun Jan 2023

Dual Quaternion Relative Dynamics For Gravity Recovery Missions, Ryan Kinzie, Riccardo Bevilacqua, Seo Dongeun

Student Works

A dual quaternion modeling approach is compared to traditional modeling methods for formation flying spacecraft utilized for gravity recovery missions. A modeling method that has traditionally been used for gravity recovery missions is presented which models the motion of two formation flying spacecraft and a test mass. This is followed by the dual quaternion-based formulation for the equations of motion of the twelve degree-of-freedom coupled relative dynamics of formation flying spacecraft and a test mass. Lastly, utilizing data products from the Gravity Recovery and Climate Experiment Follow-On mission, a comparison of these two modeling methods is presented which proves the …


Experimental Validation Of Inertia Parameters And Attitude Estimation Of Uncooperative Space Targets Using Solid State Lidar, Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano, Michele Grassi, Spencer John, Hancheol Cho, Riccardo Bevilacqua Jan 2023

Experimental Validation Of Inertia Parameters And Attitude Estimation Of Uncooperative Space Targets Using Solid State Lidar, Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano, Michele Grassi, Spencer John, Hancheol Cho, Riccardo Bevilacqua

Student Works

This paper presents an experimental activity aimed at assessing performance of techniques for inertia and attitude parameters estimation of an uncooperative but known space target. The adopted experimental set-up includes a scaled-down 3D printed satellite mock-up, a spherical air bearing and a low-cost solid-state LIDAR. The experimental facility also comprises a motion capture system to obtain a benchmark of the pose (position and attitude) parameters and an ad-hoc designed passive balancing system to keep the centre of mass as close as possible to the centre of rotation. The LIDAR-based 3D point clouds, collected while the target rotates on the spherical …


Spacecraft Systems & Navigation, Christopher Vanacore Nov 2022

Spacecraft Systems & Navigation, Christopher Vanacore

Student Works

This textbook is steered towards higher educational course entailed in Commercial Space Operations. This textbook will be covering in detail Orbital Satellites, and Spacecraft. These topics are discussed according to their application, design, and environment. The power system, shielding and communication systems are reviewed along with their missions, space, environment and limitations. Any vehicle, whether manned or unmanned, intended for space travel is a spacecraft. A spacecraft's required systems and equipment depend on the information it will acquire and the tasks it will perform. Although their levels of sophistication vary widely, they re all subject to the harsh conditions of …


Data-Driven Cfd Scaling Of Bioinspired Mars Flight Vehicles For Hover, Jeremy A. Pohly, Chang-Kwon Kang, Brian D. Landrum, James E. Bluman, Hikaru Aono Mar 2021

Data-Driven Cfd Scaling Of Bioinspired Mars Flight Vehicles For Hover, Jeremy A. Pohly, Chang-Kwon Kang, Brian D. Landrum, James E. Bluman, Hikaru Aono

PRC-Affiliated Research

One way to improve our model of Mars is through aerial sampling and surveillance, which could provide information to augment the observations made by ground-based exploration and satellite imagery. Flight in the challenging ultra-low-density Martian environment can be achieved with properly scaled bioinspired flapping wing vehicle configurations that utilize the same high lift producing mechanisms that are employed by insects on Earth. Through dynamic scaling of wings and kinematics, we investigate the ability to generate solutions for a broad range of flapping wing flight vehicles with masses ranging from insects O(10−3) kg to the Mars helicopter Ingenuity O(100) kg. A …


Data-Driven Cfd Scaling Of Bioinspired Mars Flight Vehicles For Hover, Jeremy A. Pohly, Chang-Kwon Kang, Brian D. Landrum, James E. Bluman, Hikaru Aono Mar 2021

Data-Driven Cfd Scaling Of Bioinspired Mars Flight Vehicles For Hover, Jeremy A. Pohly, Chang-Kwon Kang, Brian D. Landrum, James E. Bluman, Hikaru Aono

PRC-Affiliated Research

One way to improve our model of Mars is through aerial sampling and surveillance, which could provide information to augment the observations made by ground-based exploration and satellite imagery. Flight in the challenging ultra-low-density Martian environment can be achieved with properly scaled bioinspired flapping wing vehicle configurations that utilize the same high lift producing mechanisms that are employed by insects on Earth. Through dynamic scaling of wings and kinematics, we investigate the ability to generate solutions for a broad range of flapping wing flight vehicles with masses ranging from insects O(10−3) kg to the Mars helicopter Ingenuity O(100) kg. A …


Spacecraft Informatics, K. L. Yung, Lida Xu, Chris Zhang Jan 2021

Spacecraft Informatics, K. L. Yung, Lida Xu, Chris Zhang

Information Technology & Decision Sciences Faculty Publications

No abstract provided.


Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum Sep 2020

Celebrating 90-Orbits Around The Sun, Stafford Air & Space Museum

Programs

In celebration of the 90th birthday of Oklahoma astronaut and aerospace legend, Gen. Thomas P. Stafford, the Stafford Air & Space Museum in Weatherford, Oklahoma is offering free admission on September 17th, 2020.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Congressional Committee Resources On Space Policy During The 115th Congress (2017-2018): Providing Context And Insight Into Us Government Space Policy, Bert Chapman May 2020

Congressional Committee Resources On Space Policy During The 115th Congress (2017-2018): Providing Context And Insight Into Us Government Space Policy, Bert Chapman

Libraries Faculty and Staff Presentations

Article 1 of the US Constitution assigns the US Congress numerous responsibilities. These include creating new laws, revising existing laws, funding government programs, and conducting oversight of these programs' performance. Oversight of US Government agency space policy programs is executed by various congressional space policy committees including the House and Senate Science Committees, Armed Services, and Appropriations Committees. These committees conduct many public hearings on space policy, which invite expert witnesses to testify on US space policy programs and feature debate on the strengths and weaknesses of these programs. Documentation produced by these committees is widely available to the public, …


Congressional Committee Resources On Space Policy During The 115th Congress (2017-2018): Providing Context And Insight Into U.S. Government Space Policy, Bert Chapman Jan 2020

Congressional Committee Resources On Space Policy During The 115th Congress (2017-2018): Providing Context And Insight Into U.S. Government Space Policy, Bert Chapman

Libraries Faculty and Staff Scholarship and Research

Article 1 of the US Constitution assigns the US Congress numerous responsibilities. These include creating new laws, revising existing laws, funding government programs, and conducting oversight of these programs' performance. Oversight of US Government agency space policy programs is executed by various congressional space policy committees, including the House and Senate Science Committees, Armed Services, and Appropriations Committees. These committees conduct many public hearings on space policy which invite witnesses to testify on US space policy programs and feature debate on the strengths and weaknesses of these programs. Documentation produced by these committees is widely available to the public, except …


The Impact Of Human Assurance On Satellite Operations, Holly Handley, Dan Heimerdinger, Unal Tatar (Ed.), Adrian V. Gheorghe (Ed.), Omer F. Keskin (Ed.), Jean Muylaert (Ed.) Jan 2020

The Impact Of Human Assurance On Satellite Operations, Holly Handley, Dan Heimerdinger, Unal Tatar (Ed.), Adrian V. Gheorghe (Ed.), Omer F. Keskin (Ed.), Jean Muylaert (Ed.)

Engineering Management & Systems Engineering Faculty Publications

Mission assurance is a method to guarantee mission success against a known set of risks; mission assurance is generally represented as a probability against a threshold of acceptable performance. Human assurance can be considered as the likelihood of acceptable operator performance given a set of conditions that include the operator, the system, and the environment. Standard mission assurance models tend to assume a qualified crew, but do not include other aspects of the internal or external environment that may impact the reliability of the human operator. A human assurance model can be created that allows the exploration of the variability …


Glue-Infused Rotating Nanofibers Net (Gronnet) For Capturing Space Debris- A Novel Debris Capturing System, Sneha M. Raibagi, Prithvi S.J. Monteiro, Rashmi K. Pallam, Amogh Anantha Murthy, Amit G. Gadag, Sharanabasaweshwara Asundi, Oleksandr Kravchenko Jan 2020

Glue-Infused Rotating Nanofibers Net (Gronnet) For Capturing Space Debris- A Novel Debris Capturing System, Sneha M. Raibagi, Prithvi S.J. Monteiro, Rashmi K. Pallam, Amogh Anantha Murthy, Amit G. Gadag, Sharanabasaweshwara Asundi, Oleksandr Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

It is evident that space debris is a growing concern, particularly in the low altitude Earth orbits, and if not addressed in time, may have a drastic socio-economic impact on civilization. This paper describes the Glue-infused Rotating Nanofibers Net (GRoNNet), a novel debris capturing system for pico/nano/micro-satellites (PNMSats). GRoNNet is designed as a modular, cost-effective system with the capability to capture target debris in multiple attempts and expedite its re-entry by attaching a debris mitigation system. It may be best described by comparing it with a chameleon’s tongue but several hundreds/thousands of them infused with a thick honey-like viscous adhesive …


Possible Detection Of Low Energy Solar Neutrons Using Boron Based Materials, Nicole Benker, Elena Echeverria, Robert Olesen, Brant E. Kananen, John W. Mcclory, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, George Glenn Peterson, Ben Bradley, Ethiyal R. Wilson, James C. Petrosky, Bin Dong, Jeffry Kelber, Jennifer Hamblin, Jaques Doumani, Peter A. Dowben, Alex Enders Oct 2019

Possible Detection Of Low Energy Solar Neutrons Using Boron Based Materials, Nicole Benker, Elena Echeverria, Robert Olesen, Brant E. Kananen, John W. Mcclory, Yaroslav V. Burak, Volodymyr T. Adamiv, Ihor M. Teslyuk, George Glenn Peterson, Ben Bradley, Ethiyal R. Wilson, James C. Petrosky, Bin Dong, Jeffry Kelber, Jennifer Hamblin, Jaques Doumani, Peter A. Dowben, Alex Enders

Faculty Publications

Solar neutrons have been detected aboard the International Space Station (ISS), using lithium tetraborate and boron carbide detector elements. We find that evidence of a solar neutron flux, as detected in a neutron calorimeter following subtraction of the proton background, with an energy of about 2 to 4 MeV. This solar neutron flux is likely no more than 250 to 375 neutrons cm−2sec−1, with a lower bound of 50–75 neutrons cm−2sec−1 at one au.


An Afternoon With General Thomas P. Stafford, Stafford Air & Space Museum May 2019

An Afternoon With General Thomas P. Stafford, Stafford Air & Space Museum

Programs

An Afternoon with General Thomas P. Stafford

Sunday, May 19th, 2019 at 2:00 P.M. at the Weatherford High School Performing Arts Center.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Apollo 10, 50th Anniversary Gala, Stafford Air & Space Museum May 2019

Apollo 10, 50th Anniversary Gala, Stafford Air & Space Museum

Programs

The Apollo 10 50th Anniversary Gala was held on May 18th, 2019 at the Stafford Air & Space Museum in Weatherford, Oklahoma.


Unless stated otherwise within this repository collection, all materials are shared under the following Creative Commons license: [Creative Commons Attribution-NonCommercial 4.0 International License].


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey May 2019

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis, the lowest temperature …


Enhancing Your Intelligence Agency Information Resource Iq: Pt. 4: National Geospatial Intelligence Agency (Ngia), National Intelligence University (Niu), And National Reconnaissance Office (Nro), Bert Chapman Nov 2018

Enhancing Your Intelligence Agency Information Resource Iq: Pt. 4: National Geospatial Intelligence Agency (Ngia), National Intelligence University (Niu), And National Reconnaissance Office (Nro), Bert Chapman

Libraries Faculty and Staff Presentations

Webinar presentation on publicly accessible information resources produced by the U.S. National Geospatial Intelligence Agency (NGIA), National Intelligence University (NIU), and National Reconnaissance Office. Places significant emphasis on missions of these agencies, their historical accomplishments, coverage of their educational activity, and information on the technologies they have used and are currently using to fulfill their institutional objectives.


Hybrid Magneto-Active Propellant Management Device For Active Slosh Damping Within A Vehicle Fuel Tank, Balaji Sivasubramanian, Leander Paul, Sathya Gangadharan Sep 2018

Hybrid Magneto-Active Propellant Management Device For Active Slosh Damping Within A Vehicle Fuel Tank, Balaji Sivasubramanian, Leander Paul, Sathya Gangadharan

Publications

This disclosure includes a hybrid magneto-active mem­brane, which can be used as part of a Magneto-active Propellant Management Device (MAPMD), to actively con­trol free surface effects of liquid materials, such as fuels, and to reduce fuel slosh. The disclosed MAPMD merges aspects of a diaphragm membrane with a magneto-active inlay to control the membrane during in-flight conditions.


Techedsat 7 And 8-Nasa Missions For Earth Observation, Andrew Pham Sep 2018

Techedsat 7 And 8-Nasa Missions For Earth Observation, Andrew Pham

STAR Program Research Presentations

Big results can come from small satellites, and Technology Educational Satellite 8 or TES-8 is the latest small satellite in the TechEdSat series from NASA Ames Research Center. TechEdSat is a collaborative program, in which advanced university students have a chance to work directly with researchers on NASA Space Projects. Thanks to the assistance of students from several universities around the country every year, TechEdSat has helped NASA develop Nano-satellite technologies and evaluate new ideas for future spacecraft. TES-8 is the eighth satellite of the continuing TechEdSat series. On December 01, 2018 TES-8 followed a Commercial Resupply Service mission to …


Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker Apr 2018

Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker

Department of Biological Systems Engineering: Papers and Publications

Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the …


The Capabilities Of The Geostationary Operational Environmental Satellite-16 (Goes-16), Brandon M. Kane Oct 2017

The Capabilities Of The Geostationary Operational Environmental Satellite-16 (Goes-16), Brandon M. Kane

Student Works

This report investigates the capability of the new Geostationary Operational Environmental Satellite-16 (GOES-16) satellite to display 16 channels of the electromagnetic spectrum, to produce images at a higher resolution at increased intervals, and to detect and display lightning. This report also discusses the main instrumentation aboard the new geostationary satellite and how it aids in creating accurate data collection, which in turn, produces quicker weather forecasts and warnings. The 16 different channels produced by the Advanced Baseline Imager aboard the new satellite are analyzed in detail as to the functions and wavelengths on which the channels operate. The image resolution …


Suitability Testing For Possum Scientist-Astronaut Candidates Using The Suborbital Space Flight Simulator With An Iva Spacesuit, Pedro J. Llanos, Victor Kitmanyen, Erik Seedhouse, Ryan L. Kobrick Jul 2017

Suitability Testing For Possum Scientist-Astronaut Candidates Using The Suborbital Space Flight Simulator With An Iva Spacesuit, Pedro J. Llanos, Victor Kitmanyen, Erik Seedhouse, Ryan L. Kobrick

Publications

This paper evaluates key functional data parameters that must be considered for suborbital spaceflight participants wearing pressurized suits for intravehicular activity (IVA). Data parameters of an analog spacesuit worn in an analog flight environment were obtained from 40 civilian participants using the Suborbital Space Flight Simulator (SSFS) at Embry-Riddle Aeronautical University (ERAU) while donning Final Frontier Design’s (FFD) fully pressurized third-generation spacesuit as part of their training for Project PoSSUM (the Polar Suborbital Science in the Upper Mesosphere Project). The physiological data collected included: blood pressure, electrocardiograms, heart rate, grip strength, and skin temperature. These parameters were measured using a …