Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Space Vehicles

Selected Works

ADCS

Articles 1 - 4 of 4

Full-Text Articles in Aerospace Engineering

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub Sep 2015

An Intelligent Attitude Determination And Control System Concept For A Cubesat Class Spacecraft, Jeremy Straub

Jeremy Straub

An attitude determination and control system (ADCS) is used to orient a spacecraft for a wide variety of purposes (e.g., to keep a camera facing Earth or orient the spacecraft for propulsion system use). The proposed intelligent ADCS has several key features: first, it can be used in multiple modes, spanning from passive stabilization of two axes and unconstrained spin on a third to three-axis full active stabilization. It also includes electromagnetic components to ‘dump’ spin from the reaction wheels. Second, the ADCS utilizes an incorporated autonomous control algorithm to characterize the effect of actuation of the system components and, …


Software Design For An Intelligent Attitude Determination And Control System, Matthew Russell, Jeremy Straub Aug 2015

Software Design For An Intelligent Attitude Determination And Control System, Matthew Russell, Jeremy Straub

Jeremy Straub

Space exploration and satellite missions often carry equipment that must be accurately pointed towards distant targets, therefore making an effective attitude determination and control system (ADCS) a vital component of almost every spacecraft. However, the effectiveness of the ADCS could decrease drastically if components shift during launch, degrade in efficiency over the course of the mission, or simply fail. Prior work [0] has presented a concept for a adaptive ADCS which can respond to changing spacecraft conditions and environmental factors. This poster presents an implementation for a lazy learning ADCS is presented that uses past maneuver data to construct and …


Designing An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh Apr 2015

Designing An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh

Jeremy Straub

CubeSat spacecraft have been shown to provide significant cost [1], research [1] and educational benefits [2]. Prior work at UND has demonstrated the efficacy of this form factor of craft for asteroid as-sessment activities [3] and onboard image processing [4]. Work is al-so ongoing to develop a low-cost framework [5] for CubeSat devel-opment to enable activities at UND and at other locations.


Hardware Design For An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh Mar 2015

Hardware Design For An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh

Jeremy Straub

Attitude determination and control is one of the most important subsystems on any satellite, allowing the spacecraft to sense and control its orientation while in orbit. Attitude sensing is achieved by measuring the satellite’s acceleration, rotation, and it’s alinement to Earth’s magnetic field. With its orientation determined, a satellite can use one or several different techniques to regulate its motion. One methods is to use of a pseudo-passive system of electromagnets (called magnetorquers) powered at specific times to use magnetic fields generated by the Earth to exert force on the spacecraft, thereby controlling the rotation of the satellite and facilitating …