Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han Mar 2011

Development Of A Novel Methodology For Indoor Emission Source Identification, Kwanghoon Han

Kwanghoon Han

The objective of this study was to develop and evaluate a methodology to identify individual sources of emissions based on the measurements of mixed air samples and the emission signatures of individual materials previously determined by Proton Transfer Reaction-Mass Spectrometry (PTR-MS), an on-line analytical device. The methodology based on signal processing principles was developed by employing the method of multiple regression least squares (MRLS) and a normalization technique. Samples of nine typical building materials were tested individually and in combination, including carpet, ceiling material, gypsum board, linoleum, two paints, polyolefine, PVC and wood. Volatile Organic Compound (VOC) emissions from each …


Modeling And Control Of Space Vehicles With Fuel Slosh Dynamics, Mahmut Reyhanoglu Feb 2011

Modeling And Control Of Space Vehicles With Fuel Slosh Dynamics, Mahmut Reyhanoglu

Mahmut Reyhanoglu

"Ever since the launch of the early high-efficiency rockets, controlling liquid fuel slosh within a launch vehicle has been a major design concern. Moreover, with today's large and complex spacecraft, a substantial mass of fuel is necessary to place them into orbit and to perform orbital maneuvers."--From the book's introduction.


Cfd Implementation Of A Novel Carbon-Phenolic-In-Air Chemistry Model For Atmospheric Re-Entry, Alexandre Martin, Iain D. Boyd Jan 2011

Cfd Implementation Of A Novel Carbon-Phenolic-In-Air Chemistry Model For Atmospheric Re-Entry, Alexandre Martin, Iain D. Boyd

Alexandre Martin

Recent and future re-entry vehicle designs use ablative material as the main component of the heat shield of their thermal protection systems. In order to properly predict the behavior of the vehicle, it is imperative to take into account the gases produced by the ablation process when modeling the reacting flow environment. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled in the boundary layer is complex and might lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to …