Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerospace Engineering

Numerical Study Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Davuluri, Alexandre Martin Jun 2014

Numerical Study Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Davuluri, Alexandre Martin

Mechanical Engineering Faculty Publications

The spallation phenomenon might affect the aerodynamic heating rates of re-entry vehicles. To investigate spallation effects, a code is developed to compute the dynamics of spalled particles. The code uses a finite-rate chemistry model to study the chemical interactions of the particles with the flow field. The spallation code is one-way coupled to a CFD solver that models the hypersonic flow field around an ablative sample. Spalled particles behavior is numerically studied for argon and air flow field. The chemistry model is compared with that of Park's model which complies with oxidation and sublimation and shows disagreement for nitridation.


Modeling The Thermosphere As A Driven-Dissipative Thermodynamic System, William R. Frey, C. S. Lin, Matthew B. Garvin, Ariel O. Acebal Apr 2014

Modeling The Thermosphere As A Driven-Dissipative Thermodynamic System, William R. Frey, C. S. Lin, Matthew B. Garvin, Ariel O. Acebal

Faculty Publications

Thermospheric density impacts satellite position and lifetime through atmospheric drag. More accurate specification of thermospheric temperature, a key input to current models such as the High Accuracy Satellite Drag Model, can decrease model density errors. This paper improves the model of Burke et al. (2009) to model thermospheric temperatures using the magnetospheric convective electric field as a driver. In better alignment with Air Force satellite tracking operations, we model the arithmetic mean temperature, T 1/2, defined by the Jacchia (1977) model as the mean of the daytime maximum and nighttime minimum exospheric temperatures occurring in opposite hemispheres at a …


Could We Colonize Venus?, Nihad E. Daidzic Mar 2014

Could We Colonize Venus?, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Space Tourism: Hurdles And Hopes, Robert A. Goehlich Jan 2014

Space Tourism: Hurdles And Hopes, Robert A. Goehlich

Publications

According to the Space Policy Institute (2002, Bib. section), “Space tourism is the term broadly applied to the concept of paying customers traveling beyond Earth’s atmosphere.” Operating reusable launch vehicles (RLVs) might be a first step toward achieving mass space tourism. Thus, the aim of this article is to investigate the potential hurdles and other aspects of importance that must be overcome in order to use RLVs for space tourism flights. The primary ones are social issues (e.g., “Is space tourism ethically acceptable?”), institutional issues (e.g., “Is environmental pollution caused by space tourism more harmful than other emission sources?”), and …


Landsat-8: Science And Product Vision For Terrestrial Global Change Research, David P. Roy, M. A. Wulder, T. R. Loveland, C. E. Woodcock, R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, Desert Research Institute, Reno, Nv, C. O. Justice, Ayse Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. Mccorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, Z. Zhu Jan 2014

Landsat-8: Science And Product Vision For Terrestrial Global Change Research, David P. Roy, M. A. Wulder, T. R. Loveland, C. E. Woodcock, R. G. Allen, M. C. Anderson, D. Helder, J. R. Irons, D. M. Johnson, R. Kennedy, T. A. Scambos, C. B. Schaaf, J. R. Schott, Y. Sheng, E. F. Vermote, A. S. Belward, R. Bindschadler, W. B. Cohen, F. Gao, J. D. Hipple, P. Hostert, Desert Research Institute, Reno, Nv, C. O. Justice, Ayse Kilic, V. Kovalskyy, Z. P. Lee, L. Lymburner, J. G. Masek, J. Mccorkel, Y. Shuai, R. Trezza, J. Vogelmann, R. H. Wynne, Z. Zhu

School of Natural Resources: Faculty Publications

Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new spectral bands in the blue and cirrus cloud-detection portion of the spectrum, two thermal bands, improved sensor signal-to-noise performance and associated improvements in radiometric resolution, and an improved duty cycle that allows collection of a significantly greater number of images per day. This paper introduces the current (2012–2017) Landsat Science Team's efforts to establish an initial understanding of …