Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Aerospace Engineering

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace Dec 2021

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace

Publications

The FAA requires airports operating under the Code of Federal Regulations Part 139 to conduct a wildlife hazard assessment (WHA) when some wildlife-strike events have occurred at or near the airport. The WHA should be conducted by a Qualified Airport Wildlife Biologist (QAWB) and must contain several elements, including the identification of the wildlife species observed and their numbers; local movements; daily and seasonal occurrences; and the identification and location of features on and near the airport that could attract wildlife. Habitats and land-use practices at and around the airport are key factors affecting wildlife species and the size of …


Unmanned Aircraft Systems For Archaeology Using Photogrammetry And Lidar In Southwestern United States, Imai Bates-Domingo, Alexandra Gates, Patrick Hunter, Blake Neal, Kyle Snowden, Destin Webster Aug 2021

Unmanned Aircraft Systems For Archaeology Using Photogrammetry And Lidar In Southwestern United States, Imai Bates-Domingo, Alexandra Gates, Patrick Hunter, Blake Neal, Kyle Snowden, Destin Webster

Study America

Researchers can use small unmanned aircraft systems (sUAS), also known as drones, to make observations of historical sites, help interpret locations, and make new discoveries that may not be visible to the naked eye. A student team from Embry-Riddle Aeronautical University gathered data for historical site documentation in New Mexico using the DJI Phantom 4 Pro V2, DJI Mavic Pro 2, DJI M210 and DJI M600, and senseFly eBee. Utilizing these drones, student analysts were able to take the data gathered and create georectified orthomosaic images and 3D virtual objects. At Tularosa Canyon, at a site known as the Creekside …


Disruptive Technologies With Applications In Airline & Marine And Defense Industries, Randall K. Nichols, Hans C. Mumm, Wayne Lonstein, Suzanne Sincavage, Candice M. Carter, John-Paul Hood, Randall Mai, Mark Jackson, Bart Shields Feb 2021

Disruptive Technologies With Applications In Airline & Marine And Defense Industries, Randall K. Nichols, Hans C. Mumm, Wayne Lonstein, Suzanne Sincavage, Candice M. Carter, John-Paul Hood, Randall Mai, Mark Jackson, Bart Shields

NPP eBooks

Disruptive Technologies With Applications in Airline, Marine, Defense Industries is our fifth textbook in a series covering the world of Unmanned Vehicle Systems Applications & Operations On Air, Sea, and Land. The authors have expanded their purview beyond UAS / CUAS / UUV systems that we have written extensively about in our previous four textbooks. Our new title shows our concern for the emergence of Disruptive Technologies and how they apply to the Airline, Marine and Defense industries. Emerging technologies are technologies whose development, practical applications, or both are still largely unrealized, such that they are figuratively emerging into prominence …


Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheryl Lynn Marcham, Scott Burgess, Joseph Cerreta, Patti J. Clark, James P. Solti, Brandon Breault, Joshua G. Marcham Jan 2021

Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheryl Lynn Marcham, Scott Burgess, Joseph Cerreta, Patti J. Clark, James P. Solti, Brandon Breault, Joshua G. Marcham

Publications

Using a UAS-mounted sensor to allow for a rapid response to areas that may be difficult to reach or potentially dangerous to human health can increase the situational awareness of first responders of an aircraft crash site through the remote detection, identification, and quantification of airborne hazardous materials. The primary purpose of this research was to evaluate the remote sensing viability and application of integrating existing commercial-off-the-shelf (COTS) sensors with small unmanned aircraft system (UAS) technology to detect potentially hazardous airborne contaminants in emergency leak or spill response situations. By mounting the personal photoionization detector (PID) with volatile organic compound …