Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerospace Engineering

Optimal Sizing And Control Of Hybrid Rocket Vehicles, Srija Ryakam Dec 2021

Optimal Sizing And Control Of Hybrid Rocket Vehicles, Srija Ryakam

Doctoral Dissertations and Master's Theses

In the present work, a genetic algorithm is used to optimize a hybrid rocket engine in order to minimize the propellant required for a specific mission. In a hybrid rocket engine, the mass flow rate of the oxidizer can be throttled to enhance the performance of the rocket. First, an analysis of the internal ballistics and the ascent trajectory has been carried out for different mass flow rates of the oxidizer as a function of time, for a fixed amount of oxidizer, in order to study the effect of throttling. Two equivalent problems are considered: in the first problem the …


Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves Aug 2021

Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves

Doctoral Dissertations and Master's Theses

The primary objective of this work is to develop high-fidelity simulation model for jet noise control predictions and quantify the sound reduction when an external source frequency mode excitation is imposed on the jet flow. Whereas passive approaches using mixing devices, such as chevrons, have been shown to reduce low-frequency noise in jet engines, such approaches incur a performance penalty since they result in a reduced thrust. To avoid a performance penalty in reducing jet noise, the current work investigates a open-loop active noise control (ANC) system that utilizes a unsteady microjet actuator on the nozzle lip in the downstream …


Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph Jul 2021

Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph

Doctoral Dissertations and Master's Theses

We address the development of a dynamic-soaring capable unmanned aerial vehicle (UAV) optimized for long-duration flight with no on-board power consumption. The UAV’s aerodynamic properties are captured with the integration of variable fidelity aerodynamic analyses. In addition to this, a 6 degree-of-freedom flight simulation environment is designed to include the effects of atmospheric wind conditions. A simple flight control system aids in the development of the dynamic soaring maneuver. A modular design paradigm is adopted for the aircraft dynamics model, which makes it conducive to use the same environment to simulate other aircraft models. Multiple wind-shear models are synthesized to …


Modeling Of A Hybrid-Electric System And Design Of Control Laws For Hybrid-Electric Urban Air Mobility Power Plants, Sohail Bin Salam Lahaji Jul 2021

Modeling Of A Hybrid-Electric System And Design Of Control Laws For Hybrid-Electric Urban Air Mobility Power Plants, Sohail Bin Salam Lahaji

Doctoral Dissertations and Master's Theses

Advanced Air Mobility (AAM) is an emerging market and technology in the aerospace industry. These systems are being developed to overcome traffic congestion. The current designs make use of Distributed Electric Propulsion (DEP): either fully electric or hybrid electric. The hybrid engine system consists of two power sources: prime movers, such as turbine engines, and batteries. The hybrid systems offer higher range and endurance compared with the existing fully electric systems. Hybrid-electric power generation systems for AAM have different mission requirements when compared to systems used in automobiles. Therefore, there is a particular need to model hybrid-electric systems and the …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …