Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

2024

Institution
Keyword
Publication
Publication Type

Articles 1 - 9 of 9

Full-Text Articles in Aerospace Engineering

Space Radiation Assessment And Mitigation: Meeting The Growing Demand For Shielding Solutions By Enhancing Models And Exploring Novel Shielding Opportunities, M. Laura Sorgi Johann Jul 2024

Space Radiation Assessment And Mitigation: Meeting The Growing Demand For Shielding Solutions By Enhancing Models And Exploring Novel Shielding Opportunities, M. Laura Sorgi Johann

Doctoral Dissertations and Master's Theses

The rapid growth of satellite technology and the increasing presence of vulnerable technology and human life in space have highlighted the need for improved shielding materials. Industry standard protocols for shielding are being pushed to their limits as we gain a deeper understanding of the harsh space environment and as chip sizes approach the scale of radiation wavelengths. Furthermore, the commercialization of space is attracting interest from industries such as pharmaceuticals and semiconductor crystal growing, as they explore the potential benefits of zero-gravity production environments. However, the eagerness to develop lighter shielding and the lack of consideration for existing tools …


New Frontier In Race For Deep Space Exploration: Lunar Water Resources, Yong Wei, Honglei Lin, Fei He, Hui Zhang May 2024

New Frontier In Race For Deep Space Exploration: Lunar Water Resources, Yong Wei, Honglei Lin, Fei He, Hui Zhang

Bulletin of Chinese Academy of Sciences (Chinese Version)

Deep space exploration has become the commanding heights of science and technology competition. Since the beginning of the 21st century, China has successfully completed the lunar exploration missions of “orbiting, landing, and returning” in just twenty years, and upgraded to a new roadmap of “survey, construction, and utilization”. Meanwhile, lunar exploration worldwide has shown a trend towards normalization and commercialization. The research on lunar water resources has sparked widespread interest and intense competition among countries and space agencies, marking a new focus in human’s deep space exploration. The exploration of lunar water can help reveal crucial processes in the formation …


Winning Battle For Key And Core Technologies In Emerging Fields—Inspiration Based On 863 Program Related Projects, Guangzu Bai, Li Li, Hongfei Meng, Qiang Wang, Xiaoyang Cao, Anrong Liu, Bo Cheng, Mimi Zhan, Jing Li, Leiei Cui, Xiangwan Du May 2024

Winning Battle For Key And Core Technologies In Emerging Fields—Inspiration Based On 863 Program Related Projects, Guangzu Bai, Li Li, Hongfei Meng, Qiang Wang, Xiaoyang Cao, Anrong Liu, Bo Cheng, Mimi Zhan, Jing Li, Leiei Cui, Xiangwan Du

Bulletin of Chinese Academy of Sciences (Chinese Version)

Emerging technology fields have become the main battleground for strategic competition among major powers today, with key and core technologies serving as crucial approach in shaping a nation’s international competitive advantage. This study, from the perspective of national strategy, profoundly understands the significant importance of winning the key and core technology battle in emerging fields. Based on this understanding, it starts with a comparison between the implementation background of the 863 Program and the current reality. It systematically summarizes valuable experiences from projects aimed at advancing key and core technologies in emerging fields, and puts forward reflections and suggestions for …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Mechanical Engineering Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Blade Design And Validation Of Hydrokinetic Turbine To Harvest Water Current Energy, Setare Sadeqi May 2024

Blade Design And Validation Of Hydrokinetic Turbine To Harvest Water Current Energy, Setare Sadeqi

University of New Orleans Theses and Dissertations

The innovative aspect of this research lies in the careful integration of cutting-edge technologies throughout the entire process of designing, fabricating, and testing the carbon fiber propeller for the 3-bladed horizontal axis ocean current turbine (OCT). SolidWorks software played a pivotal role in the initial design phase, enabling a meticulous and precise modeling of the propeller's geometry. The utilization of SolidWorks allowed for a detailed exploration of various design parameters, ensuring that the propeller's structure and form were optimized for performance in ocean current conditions. Moving beyond the realm of virtual design, the choice of carbon fiber as the fabrication …


Towing Tank Trials Of Hydrokinetic Turbine Scale Model To Support Marine Energy System Verification, Shahab Rouhi May 2024

Towing Tank Trials Of Hydrokinetic Turbine Scale Model To Support Marine Energy System Verification, Shahab Rouhi

University of New Orleans Theses and Dissertations

In response to the escalating demand for sustainable energy solutions and the critical reevaluation of conventional fossil fuels due to environmental concerns, this dissertation embarks on a comprehensive exploration of hydrokinetic energy as a promising alternative. The study delves into the underexplored domain of hydrokinetic energy, leveraging innovative methodologies for effective utilization and harnessing, particularly through the development and investigation of hydrokinetic turbines.

In the realm of hydrokinetic energy conversion, our research has exclusively concentrated on horizontal-axis turbines, distinct from other turbine configurations. Noteworthy is the adaptation of a conventional horizontal-axis wind turbine for water currents, revealing enhanced performance through …


A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas May 2024

A Comprehensive Investigation Of The Influence Of Geometric Structure On The Shape Memory Performance Of Nafion, Jade Thomas

Physics Undergraduate Honors Theses

While perfluorosulfonic acid (PFSA) membranes have primarily been used in fuel cells due to their chemical, thermal, and mechanical stability, one PFSA, Nafion, boasts two unique characteristics: a broad glass transition (~55 °C to 130 °C) and a temperature-persistent electrostatic network. The combination of these two characteristics endows Nafion with exceptional shape memory properties – the ability of a material to morph and transform into pre-programmed shapes when exposed to an external stimulus – with enhanced permanent shape memorization, and a potentially near-infinite number of temporary shape memorization. This study focused on expanding the base of knowledge surrounding Nafion’s shape …


Development Of On-The-Fly Quasi-Steady State Approximation For Chemical Kinetics In Cfd, Abhinav Balamurugan Apr 2024

Development Of On-The-Fly Quasi-Steady State Approximation For Chemical Kinetics In Cfd, Abhinav Balamurugan

Doctoral Dissertations and Master's Theses

This study analyzes the feasibility of On-The-Fly Quasi-Steady-State Approximation (OTF-QSSA) application for solving chemical kinetics within Computational Fluid Dynamics (CFD) simulations, aiming to reduce the computational demand of detailed mechanisms. An algorithm that dynamically identifies and designates Quasi-Steady-State (QSS) species at specific grid locations and instances during the simulation was developed. With this information, our method pseudo-delays the advancement of concentrations for these QSS species—effectively setting their rate of concentration change to zero for a set number iteration before updating using the detailed mechanism and thereby omitting the computationally intensive processes typically required for their calculation during those skipped iteration. …


Application Of The Fokker-Planck Equation For Quantifying Initial Condition Uncertainty Of Reversible Dynamic Systems, Troy S. Newhart Apr 2024

Application Of The Fokker-Planck Equation For Quantifying Initial Condition Uncertainty Of Reversible Dynamic Systems, Troy S. Newhart

Mechanical & Aerospace Engineering Theses & Dissertations

Characterizing the behavior of dynamic systems requires the inclusion of initial conditions to propagate behavior forward in time. More realistic representations of system behavior quantify uncertainty about the initial conditions to assess sensitivity, reliability, and other stochastic response parameters. In many engineering applications, the uncertain initial conditions may be unknown given a desired response. This research applies the Fokker-Planck equation to reversible dynamic systems of select multi-dimensional nonlinear differential equations as a means for predicting the uncertainty about initial conditions. An alternating directions implicit numerical scheme is used to numerically solve the Fokker-Planck equation for both forward and reversed equations …