Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

A Comparative Study Of Vinti-Based Orbit Propagation And Estimation For Cubesats In Very Low Earth Orbits, Ethan Michael Senecal Aug 2023

A Comparative Study Of Vinti-Based Orbit Propagation And Estimation For Cubesats In Very Low Earth Orbits, Ethan Michael Senecal

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, there has been a growing interest in CubeSats and very low Earth orbit (VLEO) space missions. Mission SeaLion, a collaborative CubeSat mission between Old Dominion University, the U.S. Coast Guard Academy, and U.S. Air Force Institute of Technology, planned to launch a 3U CubeSat into VLEO. The VLEO mission is a particularly challenging environment for navigation and orbit propagation because drag introduces a significant perturbation for orbit models such as SGP4. Additionally, mission requirements left no capacity for attitude determination or control, further reducing knowledge of drag behavior of the satellite in flight. This deficiency is a …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …


Underwater Communication Acoustic Transducers: A Technology Review, Laila Shams, Tian-Bing Xu, Zhongqing Su (Ed.), Branko Glisic (Ed.), Maria Pina Limongelli (Ed.) Jan 2023

Underwater Communication Acoustic Transducers: A Technology Review, Laila Shams, Tian-Bing Xu, Zhongqing Su (Ed.), Branko Glisic (Ed.), Maria Pina Limongelli (Ed.)

Mechanical & Aerospace Engineering Faculty Publications

This paper provides a comprehensive review on transducer technologies for underwater communications. The popularly used communication transducers, such as piezoelectric acoustic transducers, electromagnetic acoustic transducers, and acousto-optic devices are reviewed in detail. The reasons that common air communication technologies are invalid die to the differences between the media of air and water are addresses. Because of the abilities to overcome challenges the complexity of marine environments, piezoelectric acoustic transducers are playing the major underwater communication roles for science, surveillance, and Naval missions. The configuration and material properties of piezoelectric transducers effects on signal output power, beamwidth, amplitude, and other properties …