Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Aerospace Engineering

Validation And Verification Flight Tests Of Fixed-Wing Collaborative Uass With High Speeds And High Inertias, A Ram (Bella) Kim Jun 2018

Validation And Verification Flight Tests Of Fixed-Wing Collaborative Uass With High Speeds And High Inertias, A Ram (Bella) Kim

A Ram (Bella) Kim

The research objective for this work is to validate and verify guidance, navigation, and control algorithms that are designed for fixed-wing collaborative unmanned aerial systems (UASs) in unstructured environments. A biologically-inspired swarm control theory provides a framework to distribute sensor payloads between several smaller and less complex agents that have local interactions. Controller design and flight testing of large UASs with high speeds and high inertias holding a formation in a dynamically changing environment and in the presence of external disturbances is complex and requires advanced planning and safety measures. Verification and validation flight tests were conducted using a fixed-wing …


Control Of Multi-Agent Collaborative Fixed-Wing Uass In Unstructured Environment, A Ram (Bella) Kim Jun 2018

Control Of Multi-Agent Collaborative Fixed-Wing Uass In Unstructured Environment, A Ram (Bella) Kim

A Ram (Bella) Kim

Swarms of unmanned aircraft are the inevitable future of the aerospace industry. In recent years, swarming robots and aircraft have been a subject of much interest; however, many research projects make impractical assumptions such as point mass dynamics with no aerodynamic effects for aircraft models, and most works stop short of fully validating their methods via flight testing. This work presents a proximity based guidance, navigation, and control of multi-agent fixed-wing unmanned aerial systems in an unstructured environment. A scalable swarm navigation method is developed using adaptive moving mesh partial differential equations controlled by the free energy heat flow equation. …


Ctle - Meteorological Sensors Incorporated Into A Uas For Pedagogical Purposes, David Ehrensperger, James Curtis, Dorothea Ivanova, Mark Sinclair, Jacqueline R. Luedtke, Tim Holt, Jennah Perry, Johnny L. Young, Nicholas E. Harris Apr 2018

Ctle - Meteorological Sensors Incorporated Into A Uas For Pedagogical Purposes, David Ehrensperger, James Curtis, Dorothea Ivanova, Mark Sinclair, Jacqueline R. Luedtke, Tim Holt, Jennah Perry, Johnny L. Young, Nicholas E. Harris

David Ehrensperger

This presentation was part of my unpublished research experience in a CTLE Faculty Learning Community (FLC) during the 2017-2018 academic year. It involved incorporating meteorological sensors in Unmanned Aerial Systems (or UAS) in the pedagogical context of meteorology courses at Embry-Riddle Aeronautical University (ERAU) in Prescott, AZ. The FLC planned the incorporation of UAS sensors and working with the subsequent recorded data into courses during the Fall 2017 semester, implemented the planning during the Spring 2018 semester, and concretely planned to continue similar data gathering activities in future iterations of the courses.

As with all FLCs at ERAU, the commitment …


Guidance Of Multi-Agent Fixed-Wing Aircraft Using A Moving Mesh Method, A Ram (Bella) Kim Oct 2016

Guidance Of Multi-Agent Fixed-Wing Aircraft Using A Moving Mesh Method, A Ram (Bella) Kim

A Ram (Bella) Kim

This paper presents a novel guidance logic for multi-agent fixed-wing unmanned aerial systems using a moving mesh method. The moving mesh method is originally designed for use in the adaptive numerical solution of partial differential equations, where a high proportion of mesh points are placed in the regions of large solution variations and few points in the rest of the domain. In this work, the positions of the aircraft are considered as mesh nodes connected to form a triangular mesh in two spatial dimensions. The outer aircraft positions are planned with the reference point algorithm. This logic provides the outer …


Fault Tree Analysis For Safety/Security Verification In Aviation Software, Andrew J. Kornecki, Mingye Liu Oct 2014

Fault Tree Analysis For Safety/Security Verification In Aviation Software, Andrew J. Kornecki, Mingye Liu

Andrew J. Kornecki

The Next Generation Air Traffic Management system (NextGen) is a blueprint of the future National Airspace System. Supporting NextGen is a nation-wide Aviation Simulation Network (ASN), which allows integration of a variety of real-time simulations to facilitate development and validation of the NextGen software by simulating a wide range of operational scenarios. The ASN system is an environment, including both simulated and human-in-the-loop real-life components (pilots and air traffic controllers).Real Time Distributed Simulation (RTDS) developed at Embry-Riddle Aeronautical University, a suite of applications providing low and medium fidelity en-route simulation capabilities, is one of the simulations contributing to the ASN. …


Development Of A Master Of Software Assurance Reference Curriculum, Andrew J. Kornecki, James Mcdonald, Julia H. Allen, Mark Ardis, Nancy Mead, Richard Linger, Thomas B. Hilburn Oct 2014

Development Of A Master Of Software Assurance Reference Curriculum, Andrew J. Kornecki, James Mcdonald, Julia H. Allen, Mark Ardis, Nancy Mead, Richard Linger, Thomas B. Hilburn

Andrew J. Kornecki

The Next Generation Air Traffic Management system (NextGen) is a blueprint of the future National Airspace System. Supporting NextGen is a nation-wide Aviation Simulation Network (ASN), which allows integration of a variety of real-time simulations to facilitate development and validation of the NextGen software by simulating a wide range of operational scenarios. The ASN system is an environment, including both simulated and human-in-the-loop real-life components (pilots and air traffic controllers).Real Time Distributed Simulation (RTDS) developed at Embry-Riddle Aeronautical University, a suite of applications providing low and medium fidelity en-route simulation capabilities, is one of the simulations contributing to the ASN. …


Ecological Interface Design: Control Space Robustness In Future Trajectory-Based Air Traffic Control Decision Support, Rolf Klomp, Clark Borst, Max Mulder, Gesa Praetorius Sep 2014

Ecological Interface Design: Control Space Robustness In Future Trajectory-Based Air Traffic Control Decision Support, Rolf Klomp, Clark Borst, Max Mulder, Gesa Praetorius

Gesa Praetorius

The current evolution of the Air Traffic Management system towards trajectory-based operations is foreseen to bring large changes to the work domain of the Air Traffic Controller. Although this new form of Air Traffic Control leans heavily on the introduction of advanced automation, the general consensus is that the human must remain actively involved in the decision-making loop, and retain the ultimate responsibility for the safety of operations. These responsibilities, together with the complexities of the new task, require the development of innovative decision support tools. In previous research, and following the principles of Ecological Interface Design, a constraint-based decision …


Joint Metering And Conflict Resolution In Air Traffic Control, Jerome Le Ny, George J. Pappas Mar 2012

Joint Metering And Conflict Resolution In Air Traffic Control, Jerome Le Ny, George J. Pappas

George J. Pappas

This paper describes a novel optimization-based approach to conflict resolution in air traffic control, based on geometric programming. The main advantage of the approach is that Geometric Programs (GPs) can also capture various metering directives issued by the traffic flow management level, in contrast to most recent methods focusing purely on aircraft separation issues. GPs can also account for some of the nonlinearities present in the formulations of conflict resolution problems, while incurring only a small penalty in computation time with respect to the fastest linear programming based approaches. Additional integer variables can be introduced to improve the quality of …


Joint Metering And Conflict Resolution In Air Traffic Control, Jerome Le Ny, George J. Pappas Mar 2012

Joint Metering And Conflict Resolution In Air Traffic Control, Jerome Le Ny, George J. Pappas

George J. Pappas

This paper describes a novel optimization-based approach to conflict resolution in air traffic control, based on geometric programming. The main advantage of the approach is that Geometric Programs (GPs) can also capture various metering directives issued by the traffic flow management level, in contrast to most recent methods focusing purely on aircraft separation issues. GPs can also account for some of the nonlinearities present in the formulations of conflict resolution problems, while incurring only a small penalty in computation time with respect to the fastest linear programming based approaches. Additional integer variables can be introduced to improve the quality of …


Joint Metering And Conflict Resolution In Air Traffic Control, Jerome Le Ny, George J. Pappas Mar 2012

Joint Metering And Conflict Resolution In Air Traffic Control, Jerome Le Ny, George J. Pappas

George J. Pappas

This paper describes a novel optimization-based approach to conflict resolution in air traffic control, based on geometric programming. The main advantage of the approach is that Geometric Programs (GPs) can also capture various metering directives issued by the traffic flow management level, in contrast to most recent methods focusing purely on aircraft separation issues. GPs can also account for some of the nonlinearities present in the formulations of conflict resolution problems, while incurring only a small penalty in computation time with respect to the fastest linear programming based approaches. Additional integer variables can be introduced to improve the quality of …