Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Aerospace Engineering

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli May 2018

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli

Electronic Theses and Dissertations

Metal Additive Manufacturing (AM) is increasingly being used to make functional components. One of the barriers for AM components to become mainstream is the difficulty to certify them. AM components can have widely different properties based on process parameters. Improving an AM processes requires an understanding of process-structure-property correlations, which can be gathered in-situ and post-process through nondestructive and destructive methods. In this study, two metal AM processes were studied, the first is Ultrasonic Additive Manufacturing (UAM) and the second is Laser Powder Bed Fusion (L-PBF). The typical problems with UAM components are inter-layer and inter-track defects. To improve the …


Characterization Of Laser Deposited Ti-6al-4v To Nb Gradient Alloys, Clincy Cheung Jun 2015

Characterization Of Laser Deposited Ti-6al-4v To Nb Gradient Alloys, Clincy Cheung

Materials Engineering

An alloy was fabricated with Ti-6Al-4V and Nb powder using laser deposition (LD) to form a compositional gradient. The gradient was deposited, starting with Ti-6Al-4V powder, onto a forged Ti-6Al-4V substrate in an Argon environment. Niobium (Nb) composition increased by 4-at.% with each layer deposited until the composition reached 100-at.% Nb. This process yielded steep thermal gradients and affected the microstructure and mechanical properties across the compositional gradient. To observe the microstructural changes in the alloy, an etched gradient was viewed with optical microscopy at 1000x, where the grain structure was observed to be an acicular α phase at 100-at.% …