Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 88

Full-Text Articles in Aerospace Engineering

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Muscle Synergies Improve Estimation Of Knee Contact Forces During Walking, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

This study investigates whether use of subject-specific muscle synergies can improve optimization predictions of muscle excitation patterns and knee contact forces during walking. Muscle synergies describe how a small number of neural commands generated by the nervous system can be linearly combined to produce the broad range of muscle electromyographic (EMG) signals measured experimentally. By quantifying the interdependence of individual EMG signals, muscle synergies provide dimensionality reduction for the neural control redundancy problem. Our hypothesis was that use of subjectspecific muscle synergies to limit muscle excitation patterns would improve prediction of muscle EMG patterns at the hip, knee, and ankle …


Muscle Synergy Constraints Improve Prediction Of Knee Contact Force During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Muscle Synergy Constraints Improve Prediction Of Knee Contact Force During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

Knowledge of patient-specific muscle and joint contact forces during activities of daily living could improve the treatment of movement-related disorders (e.g., osteoarthritis, stroke, cerebral palsy, Parkinson’s disease). Unfortunately, it is currently impossible to measure these quantities directly under common clinical conditions, and calculation of these quantities using computer models is limited by the redundant nature of human neural control (i.e., more muscles than theoretically necessary to actuate the available degrees of freedom in the skeleton). Walking is a particularly important task to understand, since loss of mobility is associated with increased morbidity and decreased quality of life. Though numerous musculoskeletal …


Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin Fregly Dec 2015

Evaluation Of Different Optimal Control Problem Formulations For Solving The Muscle Redundancy Problem, Friedl De Groote, Allison Kinney, Anil Rao, Benjamin Fregly

Allison Kinney

This study evaluates several possible optimal control problem formulations for solving the muscle redundancy problem with the goal of identifying the most efficient and robust formulation. One novel formulation involves the introduction of additional controls that equal the time derivative of the states, resulting in very simple dynamic equations. The nonlinear equations describing muscle dynamics are then imposed as algebraic constraints in their implicit form, simplifying their evaluation. By comparing different problem formulations for computing muscle controls that can reproduce inverse dynamic joint torques during gait, we demonstrate the efficiency and robustness of the proposed novel formulation.


Material Properties And Microstructural Characterization Of Specimens, T.J. Silverman, Allison Kinney, B. South, W. Yong, J.H. Koo Dec 2015

Material Properties And Microstructural Characterization Of Specimens, T.J. Silverman, Allison Kinney, B. South, W. Yong, J.H. Koo

Allison Kinney

The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new software. This paper quantifies differences in mechanical and morphological properties of specimens built first using a Vanguard HS (high-speed) system and again using the same system with the HiQ upgrade applied. Standard specimens are built from DuraForm PA material and tested for tensile modulus, tensile strength, elongation at break, flexural modulus and Izod impact strength. The design of the specimen battery, the conduction of the tests and the significance of the results are discussed. The upgrade is found to …


Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd Dec 2015

Synergies Controls Improve Prediction Of Knee Contact Forces And Muscle Excitations During Gait, Benjamin Fregly, Jonathan Walter, Allison Kinney, Scott Banks, Darryl D'Lima, Thor Besier, David Lloyd

Allison Kinney

This study investigates whether use of muscle excitation controls constructed from subjectspecific muscle synergy information can improve optimization prediction of knee contact forces and muscle excitations during walking. Muscle synergies quantify how a large number of experimental muscle electromyographic (EMG) signals can be reconstructed by linearly mixing a much smaller number of neural commands generated by the nervous system. Our hypothesis was that controlling all muscle excitations with a small set of experimentally calculated neural commands would improve prediction of knee contact forces and leg muscle excitations compared to using independently controlled muscle excitations.


Comparison Of Material Properties And Microstructure Of Specimens Built Using The 3d Systems Vanguard Hs And Vanguard Hiq+Hs Sls Systems, T.J. Silverman, Allison Kinney, W. Yong, J.H. Koo Dec 2015

Comparison Of Material Properties And Microstructure Of Specimens Built Using The 3d Systems Vanguard Hs And Vanguard Hiq+Hs Sls Systems, T.J. Silverman, Allison Kinney, W. Yong, J.H. Koo

Allison Kinney

The HiQ upgrade to the 3D Systems Vanguard selective laser sintering (SLS) machine incorporates a revised thermal calibration system and new control software. The paper compares the tensile modulus, tensile strength, elongation at break, flexural modulus, Izod impact resistance and microstructure of two batteries of standard specimens built from recycled Duraform PA (Nylon 12). The first set is built on a Vanguard HS system and the second on the same system with the HiQ upgrade installed. The upgrade reduces user intervention, decreases total build time and improves surface finish. However, using the default processing parameters, tensile, flexure and impact properties …


The Aerodynamic And Dynamic Loading Of A Slender Structure By An Impacting Tornado-Like Vortex: The Influence Of Relative Vortex-To-Structure Size On Structural Loading, Matthew Nicholas Strasser Dec 2015

The Aerodynamic And Dynamic Loading Of A Slender Structure By An Impacting Tornado-Like Vortex: The Influence Of Relative Vortex-To-Structure Size On Structural Loading, Matthew Nicholas Strasser

Graduate Theses and Dissertations

Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging …


Implementing A Linear Quadratic Spacecraft Attitude Control System, Daniel Kolosa Dec 2015

Implementing A Linear Quadratic Spacecraft Attitude Control System, Daniel Kolosa

Masters Theses

This thesis implements a linear quadratic attitude control system for a low-thrust spacecraft. The goal is to maintain spacecraft alignment with a time-varying thrust vector needed for trajectory change maneuvers. A linear quadratic attitude control approach is used to maintain spacecraft pointing throughout flight. This attitude control strategy uses the thrust-acceleration input obtained from a linear quadratic optimal trajectory control model that simulates the trajectory of a spacecraft in orbit maneuvers. This attitude model simulates a CubeSat, a small satellite that is equipped with a low-thrust propulsion and attitude control system. An orbit raising and a plane change scenario is …


Studying The Optimum Design Of Automotive Thermoelectric Air Conditioning, Alaa Attar Dec 2015

Studying The Optimum Design Of Automotive Thermoelectric Air Conditioning, Alaa Attar

Dissertations

The remarkable amount of research being conducted on thermoelectrics gives the impression that this technology will have a bright future in power generation and temperature control systems. At the present time, thermoelectrics is applied widely for temperature control, but has not yet replaced conventional air-conditioning systems due to its lower performance. Currently, approximately 10% of annual vehicle fuel consumption corresponds to the air-conditioning system used to cool the vehicle cabin. Conventional air-conditioning systems cool the entire cabin; however, about 73% of a vehicle’s mileage occurs while the driver is the only occupant. These facts indicate the need for a single …


Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen Dec 2015

Optimization Of Titanium Liquid/Gas Diffusion Layers In Proton Exchange Membrane Electrolyzer Cells, Stuart Mccoy Steen

Masters Theses

Polymer electrolyte membrane electrolyzer cells (PEMECs), which are reverse PEM fuel cells (PEMFCs), are effective energy storage medium by producing hydrogen/oxygen from water using electricity from renewable energy sources. This is due in part because of its efficiency, high energy density, compact design, and large capacity. In a PEMEC, a liquid/gas diffusion layer (LGDL) is located between the catalyst layer and the current distributing flow field. The LGDL is expected to transport electrons, heat, and reactants/products to and from the catalyst layer with minimum voltage, current, thermal, interfacial, and fluidic losses. Carbon materials (carbon paper or carbon cloth), typically used …


Software-And Hardware-In-The-Loop Verification Of Flight Dynamics Model And Flight Control Simulation Of A Fixed-Wing Unmanned Aerial Vehicle, Calvin Coopmans, Michal Podhradsk, Nathan V. Hoffer Nov 2015

Software-And Hardware-In-The-Loop Verification Of Flight Dynamics Model And Flight Control Simulation Of A Fixed-Wing Unmanned Aerial Vehicle, Calvin Coopmans, Michal Podhradsk, Nathan V. Hoffer

Mechanical and Aerospace Engineering Faculty Publications

Unmanned aerial system (UAS) use is ever-increasing. In this paper, it is shown that even with low-cost hardware and open-source software, simple numerical testing practices (software- and hardware-in-the-loop) can prove the accuracy and usefulness of an aeronautical flight model, as well as provide valuable pre-flight testing of many situations typically only encountered in flight: high winds, hardware failure, etc. Software and hardware simulation results are compared with actual flight testing results to show that these modeling and testing techniques are accurate and provide a useful testing platform for a small unmanned aerial vehicle. Source code used in simulation is open …


Wideband Fluorescence-Based Thermometry By Neural Network Recognition: Photothermal Application With 10 Ns Time Resolution, Liwang Liu, Kuo Zhong, Troy Munro, Salvador Alvarado, Renaud Cote, Sebastiaan Creten, Eduard Fron, Heng Ban, Mark Van Der Auweraer, N. B. Roozen, Osamu Matsuda, Christ Glorieux Nov 2015

Wideband Fluorescence-Based Thermometry By Neural Network Recognition: Photothermal Application With 10 Ns Time Resolution, Liwang Liu, Kuo Zhong, Troy Munro, Salvador Alvarado, Renaud Cote, Sebastiaan Creten, Eduard Fron, Heng Ban, Mark Van Der Auweraer, N. B. Roozen, Osamu Matsuda, Christ Glorieux

Mechanical and Aerospace Engineering Faculty Publications

Neural network recognition of features of the fluorescence spectrum of a thermosensitive probe is exploited in order to achieve fluorescence-based thermometry with an accuracy of 200 mK with 100 MHz bandwidth, and with high robustness against fluctuations of the probe laser intensity used. The concept is implemented on a rhodamine B dyed mixture of copper chloride and glycerol, and the temperature dependent fluorescence is investigated in the temperature range between 234 K and 311 K. The spatial dependence of the calibrated amplitude and phase of photothermally induced temperature oscillations along the axis of the excitation laser are determined at different …


Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator For High-Speed Flow And Combustion Diagnostics, Naibo Jiang, Walter R. Lempert, Gary L. Switzer, Terrence R. Meyer, James R. Gord Nov 2015

Narrow-Linewidth Megahertz-Repetition-Rate Optical Parametric Oscillator For High-Speed Flow And Combustion Diagnostics, Naibo Jiang, Walter R. Lempert, Gary L. Switzer, Terrence R. Meyer, James R. Gord

Terrence R Meyer

We demonstrate the ability to generate ultra-high-frequency sequences of broadly wavelength-tunable, high-intensity laser pulses using a custom-built optical parametric oscillator pumped by the thirdharmonic output of a "burst-mode" Nd:YAG laser. Burst sequences consisting of 6-10 pulses separated in time by 6-10 Îs are obtained, with average total conversion efficiency from the 355 nm pump to the near-IR signal and idler wavelengths of 33%. Typical individual pulse output energy for the signal and idler beams is in the range of 4-6 mJ, limited by the available pump energy. Line narrowing is demonstrated by means of injection seeding the idler wave using …


Comparison Of Line-Peak And Line-Scanning Excitation In Two-Color Laser-Induced-Fluorescence Thermometry Of Oh, Stanislav Kostka, Sukesh Roy, Patrick J. Lakusta, Terrence R. Meyer, Michael W. Renfro, James R. Gord, Richard Branam Nov 2015

Comparison Of Line-Peak And Line-Scanning Excitation In Two-Color Laser-Induced-Fluorescence Thermometry Of Oh, Stanislav Kostka, Sukesh Roy, Patrick J. Lakusta, Terrence R. Meyer, Michael W. Renfro, James R. Gord, Richard Branam

Terrence R Meyer

Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a wellcalibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and …


Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy Nov 2015

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy

Terrence R Meyer

Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 timecorrelated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety …


Simultaneous High-Speed Measurement Of Temperature And Lifetime-Corrected Oh Laserinduced Fluorescence In Unsteady Flames, Terrence R. Meyer, Galen B. King, Matthew Glusenkamp, James R. Gord Nov 2015

Simultaneous High-Speed Measurement Of Temperature And Lifetime-Corrected Oh Laserinduced Fluorescence In Unsteady Flames, Terrence R. Meyer, Galen B. King, Matthew Glusenkamp, James R. Gord

Terrence R Meyer

A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown.


Single-Shot Gas-Phase Thermometry Using Purerotational Hybrid Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering, Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, Terrence R. Meyer Nov 2015

Single-Shot Gas-Phase Thermometry Using Purerotational Hybrid Femtosecond/Picosecond Coherent Anti-Stokes Raman Scattering, Joseph D. Miller, Sukesh Roy, Mikhail N. Slipchenko, James R. Gord, Terrence R. Meyer

Terrence R Meyer

High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate singleshot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps …


Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer Nov 2015

Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer

Terrence R Meyer

A method for quantitative measurements of gas and liquid distributions is demonstrated using simultaneous x-ray fluorescence and radiography of both phases in an atomizing coaxial spray. Synchrotron radiation at 10.1 keV from the Advanced Photon Source at Argonne National Laboratory is used for x-ray fluorescence of argon gas and two tracer elements seeded into the liquid stream. Simultaneous time-resolved x-ray radiography combined with timeaveraged dual-tracer fluorescence measurements enabled corrections for reabsorption of x-ray fluorescence photons for accurate, line-of-sight averaged measurements of the distribution of the gas and liquid phases originating from the atomizing nozzle.


Coalescence-Induced Jumping Of Nanoscale Droplets On Super-Hydrophobic Surfaces, Zhi Liang, Pawel Keblinski Oct 2015

Coalescence-Induced Jumping Of Nanoscale Droplets On Super-Hydrophobic Surfaces, Zhi Liang, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Coalescence-Induced Jumping of Tens of Microns Size Droplets on Super-Hydrophobic Surfaces Has Been Observed in Both Experiments and Simulations. However, Whether the Coalescence-Induced Jumping Would Occur for Smaller, Particularly Nanoscale Droplets, is an Open Question. using Molecular Dynamics Simulations, We Demonstrate that in Spite of the Large Internal Viscous Dissipation, Coalescence of Two Nanoscale Droplets on a Super-Hydrophobic Surface Can Result in a Jumping of the Coalesced Droplet from the Surface with a Speed of a Few M/s. Similar to the Coalescence-Induced Jumping of Microscale Droplets, We Observe that the Bridge between the Coalescing Nano-Droplets Expands and Impacts the …


Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina Oct 2015

Axisymmetric Bi-Propellant Air Augmented Rocket Testing With Annular Cavity Mixing Enhancement, Allen A. C. Capatina

Master's Theses

Performance characterization was undertaken for an air augmented rocket mixing duct with annular cavity configurations intended to produce thrust augmentation. Three mixing duct geometries and a fully annular cavity at the exit of the nozzle were tested to enable thrust comparisons. The rocket engine used liquid ethanol and gaseous oxygen, and was instrumented with sensors to output total thrust, mixing duct thrust, combustion chamber pressure, and propellant differential pressures across Venturi flow measurement tubes.

The rocket engine was tested to thrust maximum, with three different mixing ducts, three major combustion pressure sets, and a nozzle exit plane annular cavity (a …


Molecular Simulations And Lattice Dynamics Determination Of Stillinger-Weber Gan Thermal Conductivity, Zhi Liang, Ankit Jain, Alan J.H. Mcgaughey, Pawel Keblinski Sep 2015

Molecular Simulations And Lattice Dynamics Determination Of Stillinger-Weber Gan Thermal Conductivity, Zhi Liang, Ankit Jain, Alan J.H. Mcgaughey, Pawel Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Bulk Thermal Conductivity of Stillinger-Weber (SW) Wurtzite GaN in the [0001] Direction at a Temperature of 300 K is Calculated using Equilibrium Molecular Dynamics (EMD), Non-Equilibrium MD (NEMD), and Lattice Dynamics (LD) Methods. While the NEMD Method Predicts a Thermal Conductivity of 166 ± 11 W/m·K, Both the EMD and LD Methods Predict Thermal Conductivities that Are an Order of Magnitude Greater. We Attribute the Discrepancy to Significant Contributions to Thermal Conductivity from Long-Mean Free Path Phonons. We Propose that the Grüneisen Parameter for Low-Frequency Phonons is a Good Predictor of the Severity of the Size Effects in NEMD …


Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker Sep 2015

Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker

USF Tampa Graduate Theses and Dissertations

The main purpose of this thesis is to investigate the ductility and application of titanium alloys, like titanium 6Al-4V, when used in aerospace fasteners compared to more conventional stainless steel aerospace fasteners such as A286. There have been concerns raised about the safe usability of titanium 6-4 in the aerospace industry due to its lack of strain hardening. However, there is a lack of data pertaining to this concern of safe usage which this thesis aims to address. Tensile tests were conducted to find the ductility indexes of these fasteners which quantify the amount of plastic to elastic elongation. From …


The Rapidly Reconfigurable Research Cockpit, Richard Joyce Sep 2015

The Rapidly Reconfigurable Research Cockpit, Richard Joyce

Link Foundation Modeling, Simulation and Training Fellowship Reports

The goal of the Rapidly Reconfigurable Research Cockpit (R3C) project is to create and evaluate a novel approach for aviation simulators. Our concept combines a virtual reality visual environment with the tactile feedback typically found in early stage mockups. A low cost, easily modified, yet geometrically accurate cockpit panel (fabricated using 3D printing, for example) can be used while the pilot/operator wears a head-mounted display providing the visual overlay of the simulator.


Contributions Of Mass And Bond Energy Difference And Interface Defects On Thermal Boundary Conductance, Nicholas A. Roberts, Changjin Choi Sep 2015

Contributions Of Mass And Bond Energy Difference And Interface Defects On Thermal Boundary Conductance, Nicholas A. Roberts, Changjin Choi

Mechanical and Aerospace Engineering Faculty Publications

The impact of mass and bond energy difference and interface defects on thermal boundary conductance (TBC) is investigated using non-equilibrium molecular dynamics (NEMD) with the Lennard-Jones (L-J) interatomic potential. Results show that the maximum TBC is achieved when the mass and bond energy of two dissimilar materials are matched, although the effective thermal conductivity is not necessarily a maximum due to the contributions of the thermal conductivity of the constituent materials. Mass and bond energy differences result in a mismatch between phonon dispersions, limiting high frequency phonon transport at the interface. This frequency mismatch is defined by a frequency ratio, …


Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green Sep 2015

Modeling And Test Of The Efficiency Of Electronic Speed Controllers For Brushless Dc Motors, Clayton R. Green

Master's Theses

Small electric uninhabited aerial vehicles (UAV) represent a rapidly expanding market requiring optimization in both efficiency and weight; efficiency is critical during cruise or loiter where the vehicle operates at part power for up to 99% of the mission time. Of the four components (battery, motor, propeller, and electronic speed controller (ESC)) of the electric propulsion system used in small UAVs, the ESC has no accepted performance model and almost no published performance data. To collect performance data, instrumentation was developed to measure electrical power in and out of the ESC using the two wattmeter method and current sense resistors; …


Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa Aug 2015

Assessment Of Critical Technologies For Gas Turbine Engines Using Numerical Tools, Vinicius Pessoa Mapelli, Guillermo Paniagua, Jorge Sousa

The Summer Undergraduate Research Fellowship (SURF) Symposium

In 2014 gas turbine engine has reached a market value of 82.5 billion dollars, of which 59.5% are related to aircraft propulsion. The continuous market expansion attracts more and more the interest of researchers and industries towards the development of accurate numerical techniques to model thermodynamically the entire engine. This practice allows a performance and optimization analysis before the actual experimental testing, reducing the time and required investment in the design of a new engine. In this paper, a recently developed open source numerical tool named “Toolbox for the Modeling and Analysis of Thermodynamic Systems” (T-MATS) is used to assess …


Altered Combustion Characteristics Of Aluminum Fuels Through Low-Level Fluoropolymer Inclusions With And Without In Situ Nanoaluminum., Courtney K. Murphy, Brandon Terry, Steven F. Son Aug 2015

Altered Combustion Characteristics Of Aluminum Fuels Through Low-Level Fluoropolymer Inclusions With And Without In Situ Nanoaluminum., Courtney K. Murphy, Brandon Terry, Steven F. Son

The Summer Undergraduate Research Fellowship (SURF) Symposium

Aluminum inclusions have been widely used to increase the specific impulse of solid rocket propellant. However, issues arise with the addition of aluminum in the form of agglomeration, which can cause kinetic and thermal losses (i.e., two-phase flow losses) through the nozzle, which can reduce motor performance by as much as 10%. Reduction of agglomerate size may reduce the effect of two-phase flow losses. Polytetrafluoroethylene (PTFE or TeflonTM) inclusions into aluminum via mechanical activation (MA, milling) have been shown to produce a smaller coarse agglomerate size due to microexplosion of the composite particles at the propellant surface. Perflouroalkoxy …


High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao Aug 2015

High Pressure Combustion And Supersonic Jet Ignition For H2/Air, Michael G. Woodworth, Sayan Biswas, Li Qiao

The Summer Undergraduate Research Fellowship (SURF) Symposium

There are many incentives to increase the fuel efficiency of combustion processes. This paper looks at two available options to achieve this goal. The former aims to develop an experimental method that can analyze combustion at extremely high pressures to improve the understanding of high pressure H2/air combustion. Experimental data has been lacking a suitable combustion diagnostic to visualize high pressure combustion processes, making it difficult to improve the process. Improvement of x-ray diffraction tomography in a windowless combustor makes it possible to see flame propagation at high pressure. The procedure and chamber are still in the design phase, yet …


Hot Surface Ignition, Yerbatyr Tursyn, Vikrant Goyal, Alicia Benhidjeb-Carayon, Richard Simmons, Scott Meyer, Jay P. Gore Aug 2015

Hot Surface Ignition, Yerbatyr Tursyn, Vikrant Goyal, Alicia Benhidjeb-Carayon, Richard Simmons, Scott Meyer, Jay P. Gore

The Summer Undergraduate Research Fellowship (SURF) Symposium

Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas turbine fuels Jet-A, JP-8, and JP-5 were measured. A test apparatus capable of providing reproducible data was designed and fabricated to experimentally investigate the hot surface ignition …


Entropy Minimization Design Approach Of Supersonic Internal Passages, Jorge Sousa, Guillermo Paniagua Aug 2015

Entropy Minimization Design Approach Of Supersonic Internal Passages, Jorge Sousa, Guillermo Paniagua

School of Aeronautics and Astronautics Faculty Publications

Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an …