Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Aerospace Engineering

Starfish: A Compact, Biomimetic, And Adaptive Shape Memory Alloy Orbital Debris Remover, Katelyn Branaman Apr 2024

Starfish: A Compact, Biomimetic, And Adaptive Shape Memory Alloy Orbital Debris Remover, Katelyn Branaman

Doctoral Dissertations and Master's Theses

This thesis aims to turn the tides on the orbital debris issue through the fabrication and demonstration of a compact, biomimetic, and adaptive shape memory alloy actuated orbital debris remover. The design, referred to as Starfish, is discussed in detail along with its fabrication process and object capture ability. A hard skeleton crafted from PETG was combined with shape memory alloy wires and extension springs to create a biomimetic structure that operates similar to the human hand, capable of gripping a wide range of objects. Relevant simulations were performed and discussed, the iterative fabrication process used to create each component …


A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid Mar 2024

A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid

Doctoral Dissertations and Master's Theses

Structural health monitoring in plate-like simple structures using phased array beamsteering of guided Lamb waves is useful in damage detection and evaluation efforts. Lamb waves can be effectively used for beamsteering using a linear array. The experimentation primarily focuses on beamsteering in the aluminum panel, which involves developing a simulation based on extracted data to visualize the dispersion of waves across the panel. By evaluating parameters such as slowness, velocity, and amplitude direction and variation for a specific metallic plate, the wavefront generated by a single wave source can be represented as a function of propagation angle and distance from …


Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari Oct 2023

Interfacial Thermomechanical Behavior Of Hybrid Carbon Fibers, Sriraj Srihari

Doctoral Dissertations and Master's Theses

The carbon fiber/epoxy interface is of great importance in composite design due to its load transfer mechanisms from the weak epoxy to the stronger fiber. Improving the strength of the interface reduces the risk of failure at the interface and improves the load transfer to the fiber. In this study, two types of nano-species ZnO nanowires and nickel-based metal organic frameworks were grown on carbon fibers to improve the interfaces. The interfacial mechanics of the enhanced fibers are evaluated using nanoindentation studies. Composite samples with Aeropoxy matrix and vertically aligned fibers are fabricated for this purpose. A Bruker TI-980 TriboIndenter …


Impact Resistance Of Hybrid Metal-Organic Frameworks/Carbon Fibers Composites, Derek Isaac Espinosa Ramirez Apr 2023

Impact Resistance Of Hybrid Metal-Organic Frameworks/Carbon Fibers Composites, Derek Isaac Espinosa Ramirez

Doctoral Dissertations and Master's Theses

The increase in the use of carbon fiber-reinforced polymers (CFRPs) composites in the aerospace industry generated the need of improving the properties and capabilities of these composites by adding nano-reinforcements to the carbon fibers, also called hybrid fiber reinforced polymer composites. In this study, the energy absorption due to impact at low speed will be tested and simulated in four configurations of CFRPs utilizing the same [0/90]S layout throughout them.

The carbon fiber configurations used during this study are de-sized, acid-activated, metal-organic frameworks (MOF), and carbon nanotubes (CNTs). Nickel (II) Nitrate, Methylimidazole, and Methanol were used to grow the …


Durability And Damage Analysis Of Hybrid Multiscale Composites, Suma Ayyagari Aug 2021

Durability And Damage Analysis Of Hybrid Multiscale Composites, Suma Ayyagari

Doctoral Dissertations and Master's Theses

In this dissertation, an effort was carried out to enhance the mechanical performance of fiber reinforced composites (FRPs) by modification of the fibers’ surface morphologies. The effects of various surface alterations of a plain-woven carbon fiber fabric surface, on the fiber/epoxy interface were investigated. The alterations were mostly achieved by growing different nanofillers like zinc oxide nanorods (ZnO NR), carbon nanotubes (CNTs), and metal organic frameworks (MOFs) on the fiber surface. While the growth techniques for ZnO NR and CNTs place restrictions on the size of the fabricated composites, MOFs route is uniform, affordable, and can be readily scaled up …


Piezoresistive Hybrid Nanocomposites For Strain And Damage Sensing: Experimental And Numerical Analysis, Audrey Jean-Miche Gbaguidi Jul 2020

Piezoresistive Hybrid Nanocomposites For Strain And Damage Sensing: Experimental And Numerical Analysis, Audrey Jean-Miche Gbaguidi

Doctoral Dissertations and Master's Theses

Carbon nanomaterials such as carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) demonstrate remarkable electrical and mechanical properties, which suggest promising structural and functional applications as fillers for polymer nanocomposites.

The piezoresistive behavior of these nanocomposites makes them ideal for sensing applications. Besides, hybrid nanocomposites with multiple fillers like carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) are known to exhibit improved electrical and mechanical performance when compared to mono-filler composites.

To comprehensively understand the mechanisms of electrical percolation, conductivity, and piezoresistivity in hybrid nanocomposites, the author develops a two-dimensional (2D) and a three-dimensional (3D) computational Monte Carlo percolation network models for …


Detecting Delamination In Carbon Fiber Composites Using Piezoresistive Nanocomposites, Sandeep Chava Aug 2016

Detecting Delamination In Carbon Fiber Composites Using Piezoresistive Nanocomposites, Sandeep Chava

Doctoral Dissertations and Master's Theses

Carbon fiber prepreg composites are utilized successfully as structural materials for different lightweight aerospace applications. Delamination is a critical failure mode in these composite materials. As composite plies separate from each other, the composite loses some of its ability for supporting expected loads. Therefore, detection of delamination at right time is a foremost significance. This study presents a new way for detecting delamination in composite plates using piezoresistive nanocomposites. This new procedure is setup and studied through both experimental and computational investigations. In this research, nanocomposites with 5% coarse graphene platelets are fabricated for detecting delamination. 8-ply carbon fiber prepreg …


Mechanical And Electrical Characterization Of Hybrid Carbon Nanotube Sheet-Graphene Nanocomposites For Sensing Applications, Jiukun Li May 2016

Mechanical And Electrical Characterization Of Hybrid Carbon Nanotube Sheet-Graphene Nanocomposites For Sensing Applications, Jiukun Li

Doctoral Dissertations and Master's Theses

The unique mechanical and electrical properties of carbon nanotubes and graphitic structures have drawn extensive attention from researchers over the past two decades. The electro-mechanical behavior of these structures and their composites, in which electrical resistance changes when mechanical deformation is applied facilitates their use in sensing applications.

In this work, carbon nanotube sheet- epoxy nanocomposites with the matrix modified with various contents of coarse and fine graphene nanoplatelets are fabricated. The addition of a secondary filler results in improvements of both electrical and mechanical properties. In addition, with the inclusion of the second filler, change in resistivity with mechanical …


Fatigue Damage Prognosis Of Internal Delamination In Composite Plates Under Cyclic Compression Loadings Using Affine Arithmetic As Uncertainty Propagation Tool, Audrey J-M Gbaguidi Dec 2014

Fatigue Damage Prognosis Of Internal Delamination In Composite Plates Under Cyclic Compression Loadings Using Affine Arithmetic As Uncertainty Propagation Tool, Audrey J-M Gbaguidi

Doctoral Dissertations and Master's Theses

Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics …


Investigation Into The Effects Of Wire Mesh On Tensile And Impact Properties Of Fiber Metal Laminates, Shivani A. Rudradat Dec 2013

Investigation Into The Effects Of Wire Mesh On Tensile And Impact Properties Of Fiber Metal Laminates, Shivani A. Rudradat

Doctoral Dissertations and Master's Theses

An investigational study was conducted into the tensile and impact behavior of Fiber Metal Laminates by combining 5052 alumintrm mesh or2024-T3 aluminum sheets,2.47 N (8.9 oz) or 6.67 N (24 az) ShieldStand® S fiberglass, and Hysol EA 9313 epoxy. Testing was performed under the guidelines of ASTM D3039-00 utilizing an lnstron 8802 Servohydraulic Materials Testing Instrument for tensile tests and ASTM D3763-06 utilizing an Inston 9250 HV Dynatup Impulse Impact Testing System for impact tests. Samples were strained at arate of 2 mrn/min for tensile tests and impacted with enetgies of 10 to 40 J in l0 J increments …


Measuring Acoustic Attenuation Of Polymer Materials Using Drop Ball Test, Yi Zhang Apr 2013

Measuring Acoustic Attenuation Of Polymer Materials Using Drop Ball Test, Yi Zhang

Doctoral Dissertations and Master's Theses

Polymers are often used for vibration damping and energy absorption. The effect of a material in reducing the strength of sound waves traveling through it is called acoustic attenuation. In the past, attenuation has mostly been evaluated in the MHz frequency range, using a pulse generator and transmitting transducer as the wave source. However, most real acoustic activities occur at frequencies up to a few hundred kHz. Here, a simple drop ball mechanism is used to generate acoustic source waves in the kHz range, and the attenuation capacities of several solid materials are measured. The recorded waveforms substantially differ between …


Neural Network Fatigue Life Prediction In Steel I-Beams Using Mathematically Modeled Acoustic Emission Data, Prathikshen Nambiar Selvadorai Oct 2012

Neural Network Fatigue Life Prediction In Steel I-Beams Using Mathematically Modeled Acoustic Emission Data, Prathikshen Nambiar Selvadorai

Doctoral Dissertations and Master's Theses

The purpose of this research is to predict fatigue cracking in metal beams using mathematically modeled acoustic emission (AE) data. The AE data was collected from nine samples of steel I-beam that were subjected to three-point bending caused by cyclic loading. The data gathered during these tests were filtered in order to remove long duration hits, multiple hit data, and obvious outliers. Based on the duration, energy, amplitude, and average frequency of the AE hits, the filtered data were classified into the various failure mechanisms of metals using NeuralWorks® Professional II/Plus software based self-organizing map (SOM) neural network. The parameters …