Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 65

Full-Text Articles in Aerospace Engineering

The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Spring 2018, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Oct 2018

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Buenaventura "Ven" Basco

No abstract provided.


Galileo Probe, Monish Ranjan Chatterjee Apr 2017

Galileo Probe, Monish Ranjan Chatterjee

Monish R. Chatterjee

The Galileo mission to Jupiter was formally approved by the United States Congress in 1977, several years before the space shuttle Columbia made its maiden flight into Earth orbit. The mission was a cooperative project involving scientists and engineers from the United States, Germany, Canada, Great Britain, France, Sweden, Spain, and Australia. Even though the Voyager 1 and Voyager 2 spacecraft had performed flybys of planet Jupiter and its sixteen moons in 1979, the Galileo mission was envisioned to initiate several novel observations of Jupiter, the most massive gas planet of the solar system, and its principal moons, and conduct …


Anisoplanatic Electromagnetic Image Propagation Through Narrow Or Extended Phase Turbulence Using Altitude-Dependent Structure Parameter, Monish Ranjan Chatterjee, Ali Mohamed Oct 2016

Anisoplanatic Electromagnetic Image Propagation Through Narrow Or Extended Phase Turbulence Using Altitude-Dependent Structure Parameter, Monish Ranjan Chatterjee, Ali Mohamed

Monish R. Chatterjee

The effects of turbulence on anisoplanatic imaging are often modeled through the use of a sequence of phase screens distributed along the optical path. We implement the split-step wave algorithm to examine turbulence-corrupted images.


Automatic Building Change Detection In Wide Area Surveillance, Paheding Sidike, Almabrok Essa, Fatema Albalooshi, Vijayan K. Asari, Varun Santhaseelan Oct 2016

Automatic Building Change Detection In Wide Area Surveillance, Paheding Sidike, Almabrok Essa, Fatema Albalooshi, Vijayan K. Asari, Varun Santhaseelan

Vijayan K. Asari

We present an automated mechanism that can detect and characterize the building changes by analyzing airborne or satellite imagery. The proposed framework can be categorized into three stages: building detection, boundary extraction and change identification. To detect the buildings, we utilize local phase and local amplitude from monogenic signal to extract building features for addressing issues of varying illumination. Then a support vector machine with Radial basis kernel is used for classification. In the boundary extraction stage, a level-set function with self-organizing map based segmentation method is used to find the building boundary and compute physical area of the building …


The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen May 2015

The Openorbiter Cubesat As A System-Of-Systems (Sos), Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, Benjamin Kading, David Whalen

Jeremy Straub

This paper discusses the use of the system-of-systems (SoS) methodology and SoS engineering (SoSE) to the challenge of the design and operation of a CubeSat-class spacecraft. It considers this in the context of one critical component system, the electrical power system (EPS) which interacts with virtually all other systems onboard the spacecraft. The spacecraft is also considered in the context of being a system-component of a larger mission system-of-systems. The efficacy of SoSE use for this endeavor is considered and recommendations are made for the use of SoS and SoSE by other small spacecraft and, more broadly, spacecraft developers.


Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Apr 2015

Design Of An Electrical Power System For The Openorbiter Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative aims to create an Open Prototype for Educational Nanosats (OPEN) framework (see [1]) for a complete 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a total parts cost of less than $5,000 [2]. In order to supply all spacecraft subsystems with power, an electrical power system (EPS) has been implemented. The EPS generates power using multiple solar panels, stores it in batteries and regulates it to provide continuous levels of power to all of the subsystems of the spacecraft. The EPS has a crucial role in the spacecraft …


A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


Creating A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Apr 2015

Creating A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

A reliable communication system is key to the success of a CubeSat mission, allowing for data to be trans-mitted to the ground station and commands to be up-loaded to the satellite. To satisfy this need, the OpenOrbiter satellite (a 1-U CubeSat [1], being devel-oped with a target parts budget of under $5,000 [2]) is leveraging previously space-tested [3], low-cost trans-ceiver design which is based on the SI 4463 IC unit. This board design will be included in the publically available Open Framework for Educational Nanosatel-lites (OPEN) allowing others to modify, enhance and/or make use of the design in the future.


Small Satellite Communication System Creation At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

Small Satellite Communication System Creation At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


Electrical Power System For An Open Hardware Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen Mar 2015

Electrical Power System For An Open Hardware Cubesat, Sofiane Chaieb, Michael Wegerson, Jeremy Straub, Ronald Marsh, David Whalen

Jeremy Straub

The OpenOrbiter program is developing a complete set of CubeSat hardware and software to facilitate the development of a 1-U CubeSat (10 cm x 10 cm x 10 cm, 1.33 kg spacecraft) with a parts cost of less than $5,000. This poster covers the electrical power system (EPS) for that spacecraft. The EPS is an assemblage of components that supplies all spacecraft subsystems with power, while performing health assessment of the battery and electrical buses. The EPS has a crucial role in the spacecraft and thus has to be developed and tested with extreme care.

The EPS generates power using …


A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Mar 2015

A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter small spacecraft development program aims to develop a template that can be used by colleges and universities world-wide to ‘jumpstart’ their own CubeSat development program. It is doing this through the development of designs (and implementations to test the designs functionality) of all basic CubeSat subsystems. A CubeSat can prospectively perform elements of a mission that would otherwise have required the development and deployment of a multi-million dollar satellite, thus, interest in CubeSats in industry and government is strong as well. The Open Prototype for Educational Nanosats (OPEN) design being produced by the OpenOrbiter program may, thus, be …


The Creation Of A Communication Systems For A Small Satellite At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh Mar 2015

The Creation Of A Communication Systems For A Small Satellite At The University Of North Dakota, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The SDR takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured.

Data is prepared for transmission by TCP stack software onboard the OpenOrbiter Spacecraft and placed in a queue while the spacecraft is listening for a signal from a ground station. When a …


Design Of An Onboard Distributed Multiprocessing System For A Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Mar 2015

Design Of An Onboard Distributed Multiprocessing System For A Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter program aims to develop a low-cost framework to facilitate the development of CubeSat-class spacecraft (small spacecraft with nominal dimensions of 10 cm x 10 cm x 10 cm) for a parts cost of less than $5,000. To validate the framework that has been developed, a prototype unit will also be fabricated and tested in low-Earth orbit. In addition to validating the development of Open Prototype for Educational Nanosats (OPEN) framework, the spacecraft will perform on-orbit science. One aspect of the science mission will be to demonstrate and characterize the efficacy of two types of image processing. To this …


Hardware Design For An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh Mar 2015

Hardware Design For An Intelligent Attitude Determination And Control System (Adcs), Michael Wegerson, Matt Partridge, Nathan Crocker, David Schindele, Broc Friend, Levi Lewis, Ben Johnson, Jeremy Straub, Ronald Marsh

Jeremy Straub

Attitude determination and control is one of the most important subsystems on any satellite, allowing the spacecraft to sense and control its orientation while in orbit. Attitude sensing is achieved by measuring the satellite’s acceleration, rotation, and it’s alinement to Earth’s magnetic field. With its orientation determined, a satellite can use one or several different techniques to regulate its motion. One methods is to use of a pseudo-passive system of electromagnets (called magnetorquers) powered at specific times to use magnetic fields generated by the Earth to exert force on the spacecraft, thereby controlling the rotation of the satellite and facilitating …


Analysis Of A ‘Turn-Key’ No Hardware Space Mission Using The Orbital Services Model, Jeremy Straub Mar 2015

Analysis Of A ‘Turn-Key’ No Hardware Space Mission Using The Orbital Services Model, Jeremy Straub

Jeremy Straub

Many applications that would benefit from access to space cannot afford the cost of spacecraft development, launch and operations. Other operations require only a fraction of a spacecraft or complete use of a spacecraft for a limited period of time. This paper considers the value of a ‘turn-key’ style space mission. It considers what types of missions could be reasonably conducted using this approach. The economics of being a service provider are considered. Then, a prospective mission concept for one OSM ‘turn-key’ mission is presented. The value proposition of this mission is assessed and the hardware and other capabilities required …


Using A Constellation Of Cubesats For In-Space Optical 3d Scanning, Jeremy Straub Mar 2015

Using A Constellation Of Cubesats For In-Space Optical 3d Scanning, Jeremy Straub

Jeremy Straub

The assessment of in-space objects is an area of ongoing research. Characterization of resident space objects (RSOs) can be useful for assessing the operating status of operator-affiliated or non-affiliated space assets, identifying unknown objects or gathering additional details for known objects. Under the proposed approach, a ring-like constellation of CubeSats passes around the target (at a distance) collecting imagery. This imagery is then utilized to create a 3D model of the target. This paper considers several key elements of a constellation to perform this type of imaging, including the constellation design and imaging capabilities required and the astrodynamics relevant to …


Reducing Magneto-Inductive Positioning Errors In A Metal-Rich Indoor Environment, Orfeas Kypris, Traian Abrudan, Andrew Markham Jan 2015

Reducing Magneto-Inductive Positioning Errors In A Metal-Rich Indoor Environment, Orfeas Kypris, Traian Abrudan, Andrew Markham

Orfeas Kypris

Ferrous objects distort magnetic fields and can significantly increase magneto-inductive positioning errors in indoor environments. In this work, we use image theory in order to formulate an analytical channel model for the magnetic field of a quasi-static magnetic dipole positioned above a perfectly conducting half-space. The proposed model can be used to compensate for the distorting effects that metallic reinforcement bars (rebars) impose on the magnetic field of a magneto-inductive transmitter node in an indoor environment. Good agreement is observed between the analytical solution and numerical solutions obtained from 2-D finite element simulations when the transmitter node is located more …


Advancement Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian, Ronald Marsh Apr 2014

Advancement Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian, Ronald Marsh

Jeremy Straub

Software Defined Radios (SDRs) are an exciting development in radio technology. The SDR uses software to perform many of the tasks that only hardware could previously complete on a traditional analog radio. Such tasks include encoding/decoding or applying filters to reduce noise on the signal. This powerful fusion of software and hardware have allowed SDR to be smaller in size and have a greater functionality than traditional radio setups; a perfect solution for our Open Orbiter satellite. Currently, the implementation we use consists of a simple $20 USB TV decoder for receiving, a Raspberry Pi micro-computer for transmission, and the …


Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin Mar 2014

Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin

Jeremy Straub

The OpenOrbiter Small Spacecraft Development Initiative[1] at the University of North Dakota is working to design and build a low cost[2] and open-hardware / opensource software CubeSat[3]. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Evolution Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian Mar 2014

Evolution Of The Software Defined Radio (Sdr) For The Open Orbiter Project, Michael Wegerson, Jeremy Straub, Sima Noghanian

Jeremy Straub

Software Defined Radios (SDRs) are an exciting development in radio technology. The SDR uses software to perform many of the tasks that only hardware could previously complete on a traditional analog radio. Such tasks include encoding/decoding or applying filters to reduce noise on the signal. This powerful fusion of software and hardware have allowed SDR to be smaller in size and have a greater functionality than traditional radio setups; a perfect solution for our Open Orbiter satellite. Currently, the implementation we use consists of a simple $20 USB TV decoder for receiving, a Raspberry Pi micro-computer for transmission, and the …


Verification Of Video Frame Latency Telemetry For Uav Systems Using A Secondary Optical Method, Sam B. Siewert Jan 2014

Verification Of Video Frame Latency Telemetry For Uav Systems Using A Secondary Optical Method, Sam B. Siewert

Sam B. Siewert

This paper presents preliminary work and a prototype computer vision optical method for latency measurement for an UAS (Uninhabited Aerial System) digital video capture, encode, transport, decode, and presentation subsystem. Challenges in this type of latency measurement include a no-touch policy for the camera and encoder as well as the decoder and player because the methods developed must not interfere with the system under test. The goal is to measure the true latency of displayed frames compared to observed scenes (and targets in those scenes) and provide an indication of latency to operators that can be verified and compared to …


Discrete-Time Hypersonic Flight Control Based On Extreme Learning Machine, Bin Xu Jan 2014

Discrete-Time Hypersonic Flight Control Based On Extreme Learning Machine, Bin Xu

Bin Xu

This paper describes the neural controller design for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). The dynamics are transformed into the strict-feedback form. Considering the uncertainty, the neural controller is constructed based on the single-hidden layer feedforward network (SLFN). The hidden node parameters are modified using extreme learning machine (ELM) by assigning random values. Instead of using online sequential learning algorithm (OSLA), the output weight is updated based on the Lyapunov synthesis approach to guarantee the stability of closed-loop system. By estimating the bound of output weight vector, a novel back-stepping design is presented where less online …


Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin Dec 2013

Openorbiter Ground Station Software, Alexander Lewis, Jacob Huhn, Jeremy Straub, Travis Desell, Scott Kerlin

Jeremy Straub

OpenOrbiter is a student project at the University of North Dakota to design and build a low cost1 and open-hardware / open-source software CubeSat2. The Ground Station is the user interface for operators of the satellite. The ground station software must manage spacecraft communications, track its orbital location , manage task assignment, provide security and retrieve the data from the spacecraft. This will be presented via a graphical user interface that allows a user to easily perform these tasks.


Work On A Software Defined Radio (Sdr) For A Cubesat-Class Spacecraft, Michael Wegerson, Jeremy Straub, Sima Noghanian Dec 2013

Work On A Software Defined Radio (Sdr) For A Cubesat-Class Spacecraft, Michael Wegerson, Jeremy Straub, Sima Noghanian

Jeremy Straub

A Software Defined Radio (SDR) will be used for OpenOrbit-er satellite to ground communications. The use of SDR al-lows for a smaller, more versatile radio then what a stand-ard hardware radio can provide; perfect for the unpredicta-ble environment Open Orbiter will be exposed to. Current implementation uses a simple $20 USB TV decoder for the receiver and the open-source program GNU Radio for soft-ware decoding. Broadband FM transmissions have been re-ceived and decoded successfully and on-going experimen-tation for receiving satellite communications are yielding promising results.


Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub Jun 2013

Enabling Interplanetary Small Spacecraft Science Missions With Model Based Data Analysis, Jeremy Straub

Jeremy Straub

Small spacecraft operating outside of Earth orbit are significantly constrained by the communica- tions link available to them. This is particularly true for stand-alone craft that must rely on their own antenna and transmission systems (for which gain and available power generation are limited by form factor); it is also applicable to ‘hitchhiker’-style missions which may be able to utilize (quite likely very limited amounts of) time on the primary spacecraft’s communications equip- ment for long-haul transmission.

This poster presents the adaptation of the Model-Based Transmission Reduction (MBTR) frame- work’s Model-Based Data Analysis (MBDA) component for use on an interplanetary …


Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub May 2013

Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub

Jeremy Straub

The creation of an orbital services model (where spacecraft expose their capabilities for use by other spacecraft as part of a service-for-hire or barter system) requires effective determination of how to best transmit information between the two collaborating spacecraft. Existing approaches developed for ad hoc networking (e.g., wireless networks with users entering and departing in a pseudo-random fashion) exist; however, these fail to generate optimal solutions as they ignore a critical piece of available information. This additional piece of information is the orbital characteristics of the spacecraft. A spacecraft’s orbit is nearly deterministic if the magnitude and direction of its …


A 6-U Commercial Constellation For Space Solar Power Supply To Other Spacecraft, Corey Bergsrud, Jeremy Straub Apr 2013

A 6-U Commercial Constellation For Space Solar Power Supply To Other Spacecraft, Corey Bergsrud, Jeremy Straub

Jeremy Straub

This poster presents early stage planning for a constellation

of 6-U CubeSats which will collect power from

the sun and supply it to other spacecraft in Earth orbit. Unlike

solar panels (which have a known decay rate), antenna

systems (such as would be required to receive microwavetransmitted

power) do not substantially decay over the

typical (or prospectively extended, under this model)

spacecraft lifetime. This allows a spacecraft to be built for

long-term operations (utilizing an electric propulsion technology

and/or a greater supply of conventional propellant)

and receive power from a lower-cost utility provider

spacecraft, which can be replaced on a …


The Development Of Payload Software For A Small Spacecraft, Kyle Goehner, Christoffer Korvald, Jeremy Straub, Ronald Marsh Apr 2013

The Development Of Payload Software For A Small Spacecraft, Kyle Goehner, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

The OpenOrbiter project is a multi-department effort to design and build a small spacecraft which will demonstrate the feasibility of the Open Prototype for Educational NanoSats (OPEN) framework. This framework will reduce cost of small spacecraft creation by providing design plans for free. The focus of the payload software group is to design and implement an onboard task processing and image processing service. Currently the project is in the development phase and most large design decisions have been made. This poster presents the major design decisions that have been made for the payload software and how they will affect the …


Aeroelastic Energy Harvesting Using A Nonlinear Electromagnetic Oscillator, Katherine Bender, Ndungu Muturi, Alex Spies, Christopher Lee Apr 2013

Aeroelastic Energy Harvesting Using A Nonlinear Electromagnetic Oscillator, Katherine Bender, Ndungu Muturi, Alex Spies, Christopher Lee

Christopher Lee

Results are presented from the design, fabrication and testing of an electromagnetic-inductor device to convert aeroelastic-induced oscillations of an airfoil into electricity. The energy harvester consists of three magnets configured such that the force-displacement relationship can be described by a fifth-degree polynomial. the integration of the harvester into a two-degree-of-freedom, pitch/plunge airfoil system introduces nonlinear stiffness into the plunge direction. This nonlinearity gives rise to limit cycle oscillations which, in turn, are converted to electric power by the harvester. Experimental measurements from wind tunnel tests are compared to predictions of limit cycle response and resulting power generation using a two-degree-of-freedom …