Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder Dec 2016

Dynamic Monitoring And Life Prediction Of Internal Strain-Gage Balances, David Leon Yoder

Masters Theses

Wind tunnel test customers continue to push the limits by producing air vehicle designs that produce high aerodynamic loads at the desired test conditions. These loads are a combination of steady aerodynamic, unsteady aerodynamic, and inertial forces. A methodology to monitor the health of a wind tunnel strain-gage balance has been developed. The objective of this methodology is to define the stress limits of the balance and monitor these limits so the balance can be safely tested without failure of the balance. A balance failure could result in costly damage to the wind tunnel model, support system, and the wind …


Cfd Analysis Of Viscosity Effects On Turbine Flow Meter Performance And Calibration, Carl Tegtmeier May 2015

Cfd Analysis Of Viscosity Effects On Turbine Flow Meter Performance And Calibration, Carl Tegtmeier

Masters Theses

In this research turbine flow meters were studied, using computational fluid dynamics (CFD) modeling to the study effects of viscosity on the flow meters, across a wide range of operation, to improve our understanding and their performance. A three-dimensional computational model was created for a typical flow meter geometry. The work began with a steady state model to provide an acceptable initial condition for further simulations. These results were input into a transient model that has a rotating zone around the rotor to provide insight into the interaction between static and rotational structures. In order to automatically adjust the rotor …


Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell May 2012

Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell

Masters Theses

Vorticity Confinement (VC) is a numerical technique which enhances computation of fluid flows by acting as negative diffusion within the limit of vortical regions, preventing the inherent numerical dissipation present with conventional methods. VC shares similarities with large eddy simulation (LES), but its behavior is based on a stable negative dissipation of vortical structures controlled by the automatic balance between two parameters, μ [mu] and ε [epsilon].

In this thesis, three-dimensional, parallel-computing Navier-Stokes solvers with VC are developed using the OpenFOAM computational framework. OpenFOAM is an open-source collection of C++ libraries developed for computational fluid dynamics. Object-oriented programming concepts are …