Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Aerospace Engineering

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito Apr 2024

Machine Learning-Based Gps Jamming And Spoofing Detection, Alberto Squatrito

Doctoral Dissertations and Master's Theses

The increasing reliance on Global Positioning System (GPS) technology across various sectors has exposed vulnerabilities to malicious attacks, particularly GPS jamming and spoofing. This thesis presents an analysis into detection and mitigation strategies for enhancing the resilience of GPS receivers against jamming and spoofing attacks. The research entails the development of a simulated GPS signal and a receiver model to accurately decode and extract information from simulated GPS signals. The study implements the generation of jammed and spoofed signals to emulate potential threats faced by GPS receivers in practical settings. The core innovation lies in the integration of machine learning …


Convolutional Spiking Neural Networks For Intent Detection Based On Anticipatory Brain Potentials Using Electroencephalogram, Nathan Lutes, V. Sriram Siddhardh Nadendla, K. Krishnamurthy Apr 2024

Convolutional Spiking Neural Networks For Intent Detection Based On Anticipatory Brain Potentials Using Electroencephalogram, Nathan Lutes, V. Sriram Siddhardh Nadendla, K. Krishnamurthy

Computer Science Faculty Research & Creative Works

Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic connections in biological systems and produce spike trains, which can be approximated by binary values for computational efficiency. Recently, the addition of convolutional layers to combine the feature extraction power of convolutional networks with the computational efficiency of SNNs has been introduced. This paper studies the feasibility of using a convolutional spiking neural network (CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human participants using an electroencephalogram (EEG). Data was collected during an experiment wherein participants operated a remote-controlled vehicle on a testbed …


Development Of On-The-Fly Quasi-Steady State Approximation For Chemical Kinetics In Cfd, Abhinav Balamurugan Apr 2024

Development Of On-The-Fly Quasi-Steady State Approximation For Chemical Kinetics In Cfd, Abhinav Balamurugan

Doctoral Dissertations and Master's Theses

This study analyzes the feasibility of On-The-Fly Quasi-Steady-State Approximation (OTF-QSSA) application for solving chemical kinetics within Computational Fluid Dynamics (CFD) simulations, aiming to reduce the computational demand of detailed mechanisms. An algorithm that dynamically identifies and designates Quasi-Steady-State (QSS) species at specific grid locations and instances during the simulation was developed. With this information, our method pseudo-delays the advancement of concentrations for these QSS species—effectively setting their rate of concentration change to zero for a set number iteration before updating using the detailed mechanism and thereby omitting the computationally intensive processes typically required for their calculation during those skipped iteration. …


A Machine Learning Model Of Perturb-Seq Data For Use In Space Flight Gene Expression Profile Analysis, Liam F. Johnson, James Casaletto, Lauren Sanders, Sylvain Costes Mar 2024

A Machine Learning Model Of Perturb-Seq Data For Use In Space Flight Gene Expression Profile Analysis, Liam F. Johnson, James Casaletto, Lauren Sanders, Sylvain Costes

Graduate Industrial Research Symposium

The genetic perturbations caused by spaceflight on biological systems tend to have a system-wide effect which is often difficult to deconvolute it into individual signals with specific points of origin. Single cell multi-omic data can provide a profile of the perturbational effects, but does not necessarily indicate the initial point of interference within the network. The objective of this project is to take advantage of large scale and genome-wide perturbational datasets by using them to train a tuned machine learning model that is capable of predicting the effects of unseen perturbations in new data. Perturb-Seq datasets are large libraries of …


Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor Mar 2024

Relative Vectoring Using Dual Object Detection For Autonomous Aerial Refueling, Derek B. Worth, Jeffrey L. Choate, James Lynch, Scott L. Nykl, Clark N. Taylor

Faculty Publications

Once realized, autonomous aerial refueling will revolutionize unmanned aviation by removing current range and endurance limitations. Previous attempts at establishing vision-based solutions have come close but rely heavily on near perfect extrinsic camera calibrations that often change midflight. In this paper, we propose dual object detection, a technique that overcomes such requirement by transforming aerial refueling imagery directly into receiver aircraft reference frame probe-to-drogue vectors regardless of camera position and orientation. These vectors are precisely what autonomous agents need to successfully maneuver the tanker and receiver aircraft in synchronous flight during refueling operations. Our method follows a common 4-stage process …


The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern Jan 2024

The Feasibility Of Motion Tracking Camera System For Magnetic Suspension Wind Tunnel Tests, Hisham M. Shehata, David Cox, Mark Schoenenberger, Colin Britcher, Eli Shellabarger, Timothy Schott, Brendan Mcgovern

Mechanical & Aerospace Engineering Faculty Publications

The Entry Systems Modeling (ESM) Program at NASA has actively participated in the re-development of the Magnetic Suspension Balance System (MSBS) at the six-inch subsonic wind tunnel at NASA Langley Research Center. This initiative aims to enhance the MSBS system's capabilities, enabling the testing of stingless entry vehicle models at supersonic speeds. To achieve this, control algorithms are required to ensure magnetic levitation control and stability for models during free-oscillation dynamic responses. Currently, the system relies on electromagnetic position sensors to provide real-time 3 degrees of freedom control of a rigid body. While this approach has proven successful for subsonic …


Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won Jan 2024

Gnss Software Defined Radio: History, Current Developments, And Standardization Efforts, Thomas Pany, Dennis Akos, Javier Arribas, M. Zahidul H. Bhuiyan, Pau Closas, Fabio Dovis, Ignacio Fernandez-Hernandez, Carles Fernandez-Prades, Sanjeev Gunawardena, Todd Humphreys, Zaher M. Kassas, Jose A. Lopez Salcedo, Mario Nicola, Mario L. Psiaki, Alexander Rugamer, Yong-Jin Song, Jong-Hoon Won

Faculty Publications

Taking the work conducted by the global navigation satellite system (GNSS) software-defined radio (SDR) working group during the last decade as a seed, this contribution summarizes, for the first time, the history of GNSS SDR development. This report highlights selected SDR implementations and achievements that are available to the public or that influenced the general development of SDR. Aspects related to the standardization process of intermediate-frequency sample data and metadata are discussed, and an update of the Institute of Navigation SDR Standard is proposed. This work focuses on GNSS SDR implementations in general-purpose processors and leaves aside developments conducted on …


Applications Of Ai/Ml In Maritime Cyber Supply Chains, Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, Tran Phuong Jan 2024

Applications Of Ai/Ml In Maritime Cyber Supply Chains, Rafael Diaz, Ricardo Ungo, Katie Smith, Lida Haghnegahdar, Bikash Singh, Tran Phuong

School of Cybersecurity Faculty Publications

Digital transformation is a new trend that describes enterprise efforts in transitioning manual and likely outdated processes and activities to digital formats dominated by the extensive use of Industry 4.0 elements, including the pervasive use of cyber-physical systems to increase efficiency, reduce waste, and increase responsiveness. A new domain that intersects supply chain management and cybersecurity emerges as many processes as possible of the enterprise require the convergence and synchronizing of resources and information flows in data-driven environments to support planning and execution activities. Protecting the information becomes imperative as big data flows must be parsed and translated into actions …