Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

Orbit Determination With Event-Based Cameras To Improve Space Domain Awareness, Conor M. Wisentaner Sep 2022

Orbit Determination With Event-Based Cameras To Improve Space Domain Awareness, Conor M. Wisentaner

Theses and Dissertations

The objective of this research is to assess the utility of a COTS EBC for SDA applications by evaluating its ability to produce data for orbit updates of resident space objects. Unlike traditional frame-based imaging sensors, the pixels on an EBC activate independently when a change in brightness is detected to produce a continuous data flow on a per pixel basis. This unique functionality provides much higher temporal resolution than traditional frame-based sensors, such that an EBC can generate far more data points from a single observation than a frame-based sensor. However, current COTS EBCs have less spatial resolution than …


Coupled Orbit-Attitude Dynamics And Control Of A Cubesat Equipped With A Robotic Manipulator, Charles M. Carr Mar 2022

Coupled Orbit-Attitude Dynamics And Control Of A Cubesat Equipped With A Robotic Manipulator, Charles M. Carr

Theses and Dissertations

This research investigates the utility and expected performance of a robotic servicing CubeSat. The coupled orbit-attitude dynamics of a 6U CubeSat equipped with a four-link serial manipulator are derived. A proportional-integral-derivative controller is implemented to guide the robot through a series of orbital scenarios, including rendezvous and docking following ejection from a chief spacecraft, repositioning the end effector to a desired location, and tracing a desired path with the end effector. Various techniques involving path planning and inverse differential kinematics are leveraged. Simulation results are presented and performance metrics such as settling time, state errors, control use, and system robustness …


Underactuated Attitude Control Of A Cubesat Using Cold Gas Thrusters And Nonlinear Control Methods, Adam S. Cottrell Mar 2022

Underactuated Attitude Control Of A Cubesat Using Cold Gas Thrusters And Nonlinear Control Methods, Adam S. Cottrell

Theses and Dissertations

Impulsive thrusters on small satellites, such as CubeSats, are typically used for attitude control. However, to become more agile, small CubeSats must also look to propulsion systems utilizing impulsive thrusters, such as cold-gas, for translational maneuvers. The combined thrust vector is often misaligned with the system's center of mass resulting in a disturbance torque. This must be counteracted by either an attitude determination and control system (ADCS), additional thrusters, or a control method to keep the satellite's attitude at or near equilibrium. Nonlinearities generated by the impulsive maneuvers are overcome via control techniques explored in this research to include on-off …