Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Aerospace Engineering

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii Oct 2023

Faster, Cheaper, And Better Cfd: A Case For Machine Learning To Augment Reynolds-Averaged Navier-Stokes, John Peter Romano Ii

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, the field of machine learning (ML) has made significant advances, particularly through applying deep learning (DL) algorithms and artificial intelligence (AI). The literature shows several ways that ML may enhance the power of computational fluid dynamics (CFD) to improve its solution accuracy, reduce the needed computational resources and reduce overall simulation cost. ML techniques have also expanded the understanding of underlying flow physics and improved data capture from experimental fluid dynamics.

This dissertation presents an in-depth literature review and discusses ways the field of fluid dynamics has leveraged ML modeling to date. The author selects and describes …


Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty Jan 2023

Artificial Intelligence-Enabled Exploratory Cyber-Physical Safety Analyzer Framework For Civilian Urban Air Mobility, Md. Shirajum Munir, Sumit Howlader Dipro, Kamrul Hasan, Tariqul Islam, Sachin Shetty

VMASC Publications

Urban air mobility (UAM) has become a potential candidate for civilization for serving smart citizens, such as through delivery, surveillance, and air taxis. However, safety concerns have grown since commercial UAM uses a publicly available communication infrastructure that enhances the risk of jamming and spoofing attacks to steal or crash crafts in UAM. To protect commercial UAM from cyberattacks and theft, this work proposes an artificial intelligence (AI)-enabled exploratory cyber-physical safety analyzer framework. The proposed framework devises supervised learning-based AI schemes such as decision tree, random forests, logistic regression, K-nearest neighbors (KNN), and long short-term memory (LSTM) for predicting and …


Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal Jan 2023

Patch-Wise Training With Convolutional Neural Networks To Synthetically Upscale Cfd Simulations, John P. Romano, Alec C. Brodeur, Oktay Baysal

Mechanical & Aerospace Engineering Faculty Publications

This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils …


Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur Jan 2023

Convolutional-Neural-Network-Based Des-Level Aerodynamic Flow Field Generation From Urans Data, John P. Romano, Oktay Baysal, Alec C. Brodeur

Mechanical & Aerospace Engineering Faculty Publications

The present paper culminates several investigations into the use of convolutional neural networks (CNNs) as a post-processing step to improve the accuracy of unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for subsonic flows over airfoils at low angles of attack. Time-averaged detached eddy simulation (DES)-generated flow fields serve as the target data for creating and training CNN models. CNN post-processing generates flow-field data comparable to DES resolution, but after using only URANS-level resources and properly training CNN models. This document outlines the underlying theory and progress toward the goal of improving URANS simulations by looking at flow predictions for a class of …