Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Aerospace Engineering

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


A Machine Learning Framework For Automatic Speech Recognition In Air Traffic Control Using Word Level Binary Classification And Transcription, Fowad Shahid Sohail Sep 2022

A Machine Learning Framework For Automatic Speech Recognition In Air Traffic Control Using Word Level Binary Classification And Transcription, Fowad Shahid Sohail

Theses and Dissertations

Advances in Artificial Intelligence and Machine learning have enabled a variety of new technologies. One such technology is Automatic Speech Recognition (ASR), where a machine is given audio and transcribes the words that were spoken. ASR can be applied in a variety of domains to improve general usability and safety. One such domain is Air Traffic Control (ATC). ASR in ATC promises to improve safety in a mission critical environment. ASR models have historically required a large amount of clean training data. ATC environments are noisy and acquiring labeled data is a difficult, expertise dependent task. This thesis attempts to …


Coupled Orbit-Attitude Dynamics And Control Of A Cubesat Equipped With A Robotic Manipulator, Charles M. Carr Mar 2022

Coupled Orbit-Attitude Dynamics And Control Of A Cubesat Equipped With A Robotic Manipulator, Charles M. Carr

Theses and Dissertations

This research investigates the utility and expected performance of a robotic servicing CubeSat. The coupled orbit-attitude dynamics of a 6U CubeSat equipped with a four-link serial manipulator are derived. A proportional-integral-derivative controller is implemented to guide the robot through a series of orbital scenarios, including rendezvous and docking following ejection from a chief spacecraft, repositioning the end effector to a desired location, and tracing a desired path with the end effector. Various techniques involving path planning and inverse differential kinematics are leveraged. Simulation results are presented and performance metrics such as settling time, state errors, control use, and system robustness …


Low-Cost Terrestrial Demonstration Of Autonomous Satellite Proximity Operations, Zackary R. Hewitt Mar 2021

Low-Cost Terrestrial Demonstration Of Autonomous Satellite Proximity Operations, Zackary R. Hewitt

Theses and Dissertations

The lack of satellite servicing capabilities significantly impacts the development and operation of current orbital assets. With autonomous solutions under consideration for servicing, the purpose of this research is to build and validate a low-cost hardware platform to expedite the development of autonomous satellite proximity operations. This research aims to bridge the gap between simulation and existing higher fidelity hardware testing with an affordable alternative. An omnidirectional variant of the commercially available TurtleBot3 mobile robot is presented as a 3-DOF testbed that demonstrates a satellite servicing inspection scenario. Reference trajectories for the scenario are generated via optimal control using the …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Behavior Flexibility For Autonomous Unmanned Aerial Systems, Taylor B. Bodin Mar 2018

Behavior Flexibility For Autonomous Unmanned Aerial Systems, Taylor B. Bodin

Theses and Dissertations

Autonomous unmanned aerial systems (UAS) could supplement and eventually subsume a substantial portion of the mission set currently executed by remote pilots, making UAS more robust, responsive, and numerous than permitted by teleoperation alone. Unfortunately, the development of robust autonomous systems is difficult, costly, and time-consuming. Furthermore, the resulting systems often make little reuse of proven software components and offer limited adaptability for new tasks. This work presents a development platform for UAS which promotes behavioral flexibility. The platform incorporates the Unified Behavior Framework (a modular, extensible autonomy framework), the Robotic Operating System (a RSF), and PX4 (an open- source …


Adaptive Automation Design And Implementation, Jason M. Bindewald Sep 2015

Adaptive Automation Design And Implementation, Jason M. Bindewald

Theses and Dissertations

Automations allow us to reduce the need for humans in certain environments, such as auto-pilot features on unmanned aerial vehicles. However, some situations still require human intervention. Adaptive automation is a research field that enables computer systems to adjust the amount of automation by taking over tasks from or giving tasks back to the user. This research develops processes and insights for adaptive automation designers to take theoretical adaptive automation ideas and develop them into real-world adaptive automation system. These allow developers to design better automation systems that recognize the limits of computers systems, enabling better designs for systems in …


Kernelized Locality-Sensitive Hashing For Fast Image Landmark Association, Mark A. Weems Mar 2011

Kernelized Locality-Sensitive Hashing For Fast Image Landmark Association, Mark A. Weems

Theses and Dissertations

As the concept of war has evolved, navigation in urban environments where GPS may be degraded is increasingly becoming more important. Two existing solutions are vision-aided navigation and vision-based Simultaneous Localization and Mapping (SLAM). The problem, however, is that vision-based navigation techniques can require excessive amounts of memory and increased computational complexity resulting in a decrease in speed. This research focuses on techniques to improve such issues by speeding up and optimizing the data association process in vision-based SLAM. Specifically, this work studies the current methods that algorithms use to associate a current robot pose to that of one previously …


Wide Area Search And Engagement Simulation Validation, Michael J. Marlin Mar 2007

Wide Area Search And Engagement Simulation Validation, Michael J. Marlin

Theses and Dissertations

As unmanned aerial vehicles (UAVs) increase in capability, the ability to refuel them in the air is becoming more critical. Aerial refueling will extend the range, shorten the response times, and extend loiter time of UAVs. Executing aerial refueling autonomously will reduce the command and control, logistics, and training efforts associated with fielding UAV systems. Currently, the Air Force Research Lab is researching the various technologies required to conduct automated aerial refueling (AAR). One of the required technologies is the ability to autonomously rendezvous with the tanker. The goal of this research is to determine the control required to fly …


Analysis For Cooperative Behavior Effectiveness Of Autonomous Wide Area Search Munitions, Sang M. Park Aug 2002

Analysis For Cooperative Behavior Effectiveness Of Autonomous Wide Area Search Munitions, Sang M. Park

Theses and Dissertations

The purpose of this study is to investigate how a simulation model can accurately represent the performance of the autonomous wide area search munitions, and to find the effectiveness of the cooperative behavior on the autonomous munitions. Though it does not provide a practical solution for the development of the autonomous wide area search munitions, this research will show some meaningful allocations of the munitions tasks that are applicable to the development of the autonomous munitions. For the first phase, this thesis presents how accurately a simplified simulation model can represent a proposed weapon system by comparing the simulation results …


Investigation Of Cooperative Behavior In Autonomous Wide Search Munitions, Robert E. Dunkel Iii Mar 2002

Investigation Of Cooperative Behavior In Autonomous Wide Search Munitions, Robert E. Dunkel Iii

Theses and Dissertations

The purpose of this research is to investigate the effectiveness of wide-area search munitions in various scenarios using different cooperative behavior algorithms. The general scenario involves multiple autonomous munitions searching for an unknown number of targets of different priority in unknown locations. Three cooperative behavior algorithms are used in each scenario: no cooperation, cooperative attack only, and cooperative classification and attack. In the cooperative cases, the munitions allocate tasks on-line as a group, using linear programming techniques to determine the optimum allocation. Each munition provides inputs to the task allocation routine in the form of probabilities of successfully being able …


Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control, Nathan A. Titus Jun 1998

Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control, Nathan A. Titus

Theses and Dissertations

Control concepts for satellite mounted manipulators (SMM) are examined. The primary focus is on base actuated concepts, which eliminate singularity problems associated with free floating SMMs. A new form of the equations of motion for an n-link SMM is developed using a quasi coordinate form of Lagrange's Equation. Alternative free floating SMM designs are presented which eliminate dynamic singularities, but still experience difficulties due to the unactuated base. A new generic SMM controller is developed as a framework for various control concepts with and without base actuation. Momentum constrained Jacobians are shown to produce better SMM tracking than fixed base …


Design And Construction Of The Aerobot Robotic Manipulator (Arm), William L. Cochran Dec 1993

Design And Construction Of The Aerobot Robotic Manipulator (Arm), William L. Cochran

Theses and Dissertations

This thesis designed, constructed, and tested a robotic arm for the Aerobot Aerial Robot. The main purpose of the ARM is to enable the Aerobot to retrieve objects for use in an annual robotics competition. Design of the ARM involved synthesizing the characteristics of simplicity, weight, strength, and size. The result was a three-degree-of-freedom manipulator that uses electric motors, cable linkages, and telescoping tubes to access a work space below the Aerobot. Forward and inverse kinematics were investigated to enable automation of the ARM. Data was collected from infrared sensors to validate the model. Manipulation of the ARM is presently …