Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Aerospace Engineering

Prediction Of Solid Oxide Fuel Cell Performance Using Artificial Neural Network, M. A. Rafe Biswas, Kamwana N. Mwara Oct 2017

Prediction Of Solid Oxide Fuel Cell Performance Using Artificial Neural Network, M. A. Rafe Biswas, Kamwana N. Mwara

M. A. Rafe Biswas

NASA’s Johnson Space Center has recently begun efforts to eventually integrate air-independent Solid Oxide Fuel Cell (SOFC) systems, with landers that can be propelled by LOX-CH4, for long duration missions. Using landers that utilize such propellants, provides the opportunity to use SOFCs as a power option, especially since they are able to process methane into a reactant through fuel reformation. Various lead-up activities, such as hardware testing and computational modelling, have been initiated to assist with this developmental effort.
One modeling approach, currently being explored to predict SOFC behavior, involves the usage of artificial neural networks (ANN). Since SOFC performance …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Jun 2015

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, …


The Use Of The Blackboard Architecture For A Decision Making System For The Control Of Craft With Various Actuator And Movement Capabilities, Jeremy Straub, Hassan Reza Mar 2014

The Use Of The Blackboard Architecture For A Decision Making System For The Control Of Craft With Various Actuator And Movement Capabilities, Jeremy Straub, Hassan Reza

Jeremy Straub

This paper provides an overview of an approach to the control of multiple craft with heterogeneous movement and actuation characteristics that is based on the Blackboard software architecture. An overview of the Blackboard architecture is provided. Then, the operational and mission requirements that dictate the need for autonomous control are characterized and the utility of the Blackboard architecture is for meeting these requirements is discussed. The performance of a best-path solver and naïve solver are compared. The results demonstrate that the best-path solver outperforms the naïve solver in the amount of time taken to generate a solution; however, the number …


Openorbiter Operating Software, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh Mar 2014

Openorbiter Operating Software, Dayln Limesand, Christoffer Korvald, Jeremy Straub, Ronald Marsh

Jeremy Straub

The operating software team of the OpenOrbiter project has been tasked with developing software for general spacecraft maintenance, performing mission tasks and the monitoring of system critical aspects of the spacecraft. To do so, the team is developing an autonomous system that will be able to continuously check sensors for data, and schedule tasks that pertain to the current mission and general maintenance of the onboard systems. Development in support of these objectives is ongoing with work focusing on the completion of the development of a stable system. This poster will present an overview of current work on the project …


The Design Of The Open Prototype For Educational Nanosats, Jeremy Straub Dec 2013

The Design Of The Open Prototype For Educational Nanosats, Jeremy Straub

Jeremy Straub

No abstract provided.


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Sep 2013

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and …


Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche May 2013

Software Health Management With Bayesian Networks, Johann Schumann, Timmy Mbaya, Ole J. Mengshoel, Knot Pipatsrisawat, Ashok Srivastava, Arthur Choi, Adnan Darwiche

Ole J Mengshoel

Software Health Management (SWHM) is an emerging field which addresses the critical need to detect, diagnose, predict, and mitigate adverse events due to software faults and failures. These faults could arise for numerous reasons including coding errors, unanticipated faults or failures in hardware, or problematic interactions with the external environment. This paper demonstrates a novel approach to software health management based on a rigorous Bayesian formulation that monitors the behavior of software and operating system, performs probabilistic diagnosis, and provides information about the most likely root causes of a failure or software problem. Translation of the Bayesian network model into …


Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub May 2013

Spatial Computing In An Orbital Environment: An Exploration Of The Unique Constraints Of This Special Case To Other Spatial Computing Environments, Jeremy Straub

Jeremy Straub

The creation of an orbital services model (where spacecraft expose their capabilities for use by other spacecraft as part of a service-for-hire or barter system) requires effective determination of how to best transmit information between the two collaborating spacecraft. Existing approaches developed for ad hoc networking (e.g., wireless networks with users entering and departing in a pseudo-random fashion) exist; however, these fail to generate optimal solutions as they ignore a critical piece of available information. This additional piece of information is the orbital characteristics of the spacecraft. A spacecraft’s orbit is nearly deterministic if the magnitude and direction of its …