Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Aerospace Engineering

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Manufacturability And Analysis Of Topologically Optimized Continuous Fiber Reinforced Composites, Jesus A. Ferrand Nov 2022

Manufacturability And Analysis Of Topologically Optimized Continuous Fiber Reinforced Composites, Jesus A. Ferrand

Doctoral Dissertations and Master's Theses

Researchers are unlocking the potential of Continuous Fiber Reinforced Composites for producing components with greater strength-to-weight ratios than state of the art metal alloys and unidirectional composites. The key is the emerging technology of topology optimization and advances in additive manufacturing. Topology optimization can fine tune component geometry and fiber placement all while satisfying stress constraints. However, the technology cannot yet robustly guarantee manufacturability. For this reason, substantial post-processing of an optimized design consisting of manual fiber replacement and subsequent Finite Element Analysis (FEA) is still required.

To automate this post-processing in two dimensions, two (2) algorithms were developed. The …


A Data Driven Modeling Approach For Store Distributed Load And Trajectory Prediction, Nicholas Peters Oct 2022

A Data Driven Modeling Approach For Store Distributed Load And Trajectory Prediction, Nicholas Peters

Doctoral Dissertations and Master's Theses

The task of achieving successful store separation from aircraft and spacecraft has historically been and continues to be, a critical issue for the aerospace industry. Whether it be from store-on-store wake interactions, store-parent body interactions or free stream turbulence, a failed case of store separation poses a serious risk to aircraft operators. Cases of failed store separation do not simply imply missing an intended target, but also bring the risk of collision with, and destruction of, the parent body vehicle. Given this risk, numerous well-tested procedures have been developed to help analyze store separation within the safe confines of wind …


Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger Apr 2022

Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger

Doctoral Dissertations and Master's Theses

The landing and reusability of space vehicles is one of the driving forces into renewed interest in space utilization. For missions to planetary surfaces, this soft landing has been most commonly accomplished with parachutes. However, in spite of their simplicity, they are susceptible to parachute drift. This parachute drift makes it very difficult to predict where the vehicle will land, especially in a dense and windy atmosphere such as Earth. Instead, recent focus has been put into developing a powered landing through gimbaled thrust. This gimbaled thrust output is dependent on robust path planning and controls algorithms. Being able to …


A Mathematical Analysis Of The Wind Triangle Problem And An Inquiry Of True Airspeed Calculations In Supersonic Flight, Leonard T. Huang, Lisa I. Cummings Jan 2021

A Mathematical Analysis Of The Wind Triangle Problem And An Inquiry Of True Airspeed Calculations In Supersonic Flight, Leonard T. Huang, Lisa I. Cummings

International Journal of Aviation, Aeronautics, and Aerospace

In the first half of this paper, we present a fresh perspective toward the Wind Triangle Problem in aerial navigation by deriving necessary and sufficient conditions, which we call "go/no-go conditions", for the existence/non-existence of a solution of the problem. Although our derivation is based on simple trigonometry and basic properties of quadratic functions, it is mathematically rigorous. We also offer examples to demonstrate how easy it is to check these conditions graphically. In the second half of this paper, we use function theory to re-examine another problem in aerial navigation, namely, that of computing true airspeed — even in …


Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic Jan 2017

Long And Short-Range Air Navigation On Spherical Earth, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

Global range air navigation implies non-stop flight between any two airports on Earth. Such effort would require airplanes with the operational air range of at least 12,500 NM which is about 40-60% longer than anything existing in commercial air transport today. Air transportation economy requires flying shortest distance, which in the case of spherical Earth are Orthodrome arcs. Rhumb-line navigation has little practical use in long-range flights, but has been presented for historical reasons and for comparison. Database of about 50 major international airports from every corner of the world has been designed and used in testing and route validation. …


Optimization Of Takeoffs On Unbalanced Fields Using Takeoff Performance Tool, Nihad E. Daidzic Jul 2016

Optimization Of Takeoffs On Unbalanced Fields Using Takeoff Performance Tool, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

Unbalanced field length exists when ASDA and TODA are not equal. Airport authority may add less expensive substitutes to runway full-strength pavement in the form of stopways and/or clearways to basic TORA to increase operational takeoff weights. Here developed Takeoff Performance Tool is a physics-based total-energy model used to simulate FAR/CS 25 regulated airplane takeoffs. Any aircraft, runway, and environmental conditions can be simulated, while complying with the applicable regulations and maximizing performance takeoff weights. The mathematical model was translated into Matlab, Fortran 95/2003/2008, Basic, and MS Excel computer codes. All existing FAR/CS 25 takeoff regulations are implemented. Average forces …


Early Afternoon Concurrent Panel Sessions: Commercial Space Industry Snapshot: Presentation: Small Catapult-Assisted Horizontal-Launch Reusable Rbcc Ssto Spaceplane For Economical Short-Duration Leo Access, Nihad E. Daidzic, Jan 2016

Early Afternoon Concurrent Panel Sessions: Commercial Space Industry Snapshot: Presentation: Small Catapult-Assisted Horizontal-Launch Reusable Rbcc Ssto Spaceplane For Economical Short-Duration Leo Access, Nihad E. Daidzic,

Aviation / Aeronautics / Aerospace International Research Conference

This article discusses the conceptual design, flight trajectory calculations, and utilization of the possible future horizontally-launched reusable Single-Stage-to-Orbit (SSTO) spaceplane for small payload short-duration manned/unmanned access to Low-Earth-Orbit (LEO). The 10,000 lb spaceplane would use 5,000 ft catapult-assist horizontal-launch facility and conduct powered approach and landing on conventional horizontal paved runways following the gliding atmospheric re-entry. To increase the economy of operation, the launch facility located at high elevations (4,000+ ft) equatorial region is required, such as, the plateaus in Kenya and Tanzania in Africa and/or Ecuador in South America. A 500-lb payload, including pilot-commander, is envisioned. The propulsion cycle …


Global Optimized Isothermal And Nonlinear Models Of Earth’S Standard Atmosphere, Nihad E. Daidzic, Ph.D., Aug 2015

Global Optimized Isothermal And Nonlinear Models Of Earth’S Standard Atmosphere, Nihad E. Daidzic, Ph.D.,

International Journal of Aviation, Aeronautics, and Aerospace

Both, a global isothermal temperature model and a nonlinear quadratic temperature model of the ISA was developed and presented here. Constrained optimization techniques in conjunction with the least-square-root approximations were used to design best-fit isothermal models for ISA pressure and density changes up to 47 geopotential km for NLPAM, and 86 orthometric km for ISOAM respectively. The mass of the dry atmosphere and the relevant fractional-mass scale heights have been computed utilizing the very accurate eight-point Gauss-Legendre numerical quadrature for both ISOAM and NLPAM. Both, the ISOAM and the NLPAM represent viable alternatives to ISA in many practical applications and …


Efficient General Computational Method For Estimation Of Standard Atmosphere Parameters, Nihad E. Daidzic Ph.D., Sc.D. Mar 2015

Efficient General Computational Method For Estimation Of Standard Atmosphere Parameters, Nihad E. Daidzic Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

Knowledge of standard air temperature, pressure, density, speed of sound, and viscosity as a function of altitude is essential information in aircraft design, performance testing, pressure altimeter calibration, and several other aeronautical engineering and aviation science applications. A new efficient computational method for rapid calculations of standard atmospheric parameters up to 86 orthometric km is presented. Additionally, mass and weight of each standard atmospheric layer were calculated using a numerical integration method. The sum of all fractional masses and weights represents the total mass and weight of Earth’s atmosphere. The results obtained here agree well with measurements and models of …


Improving Airplane Touchdown Control By Utilizing The Adverse Elevator Effect, Nihad E. Daidzic Ph.D., Sc.D. Oct 2014

Improving Airplane Touchdown Control By Utilizing The Adverse Elevator Effect, Nihad E. Daidzic Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

The main objective of this original research article is to understand the short-term dynamic behavior of the transport-category airplane during landing flare elevator control application. Increasing the pitch angle to arrest the sink rate, the elevator will have to produce negative lift to rotate the airplane’s nose upward. This has an immediate adverse effect of initially accelerating airplane downward. A mathematical model of landing flare based on the flat-Earth longitudinal dynamics of rigid airplane was developed which is realistic only on very short time-scales as pitch stiffness and damping were neglected. Pilot control scenarios using impulse and step elevator pull-up …