Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Aerospace Engineering

Lupa: An Excursion Vehicle For The Moons Of Mars, Shannon Kavanagh, Bo Lewis, Alex Odinamba, Joshua Mulhern Dec 2021

Lupa: An Excursion Vehicle For The Moons Of Mars, Shannon Kavanagh, Bo Lewis, Alex Odinamba, Joshua Mulhern

Senior Design Project For Engineers

Our team has designed a spacecraft and mission for exploring the moons of Mars. The Lithological and Ultraviolet Photometry Assessment (LUPA) excursion vehicle is capable of crew habitation, autonomous rendezvous, and in-vacuum sample collection all in support of a parallel Mars surface mission to be carried out in the year 2040. Our project's key focus areas revolve around orbital mechanics, space vehicle propulsion analysis, scientific exploration, and the management of various interconnected spacecraft subsystems.


Project Scrappie (Clear Constellation), Jacob Bertram, Jacob Britt, Bill Ngo, Mike Diesing Dec 2021

Project Scrappie (Clear Constellation), Jacob Bertram, Jacob Britt, Bill Ngo, Mike Diesing

Senior Design Project For Engineers

Clear Constellation™ is a nationwide competition hosted by Rubicon® to combat the growing problem of space debris in Low Earth Orbit. Project Scrappie is our team’s solution to this problem. Scrappie is an autonomous apparatus will make use of Whipple shield technology to collide with debris at high velocities and effectively destroy the debris throughout selected orbital paths.


Airframe And Systems Design, Analysis, And Testing Of The Horizon Morphing-Wing Aircraft, Sabrina A. Snow Dec 2021

Airframe And Systems Design, Analysis, And Testing Of The Horizon Morphing-Wing Aircraft, Sabrina A. Snow

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Morphing trailing edge technology can provide the ability to dynamically alter the twist distribution, and therefore lift distribution, of an aircraft during flight. There are certain optimal lift distributions which can be chosen to create proverse yawing effects and eliminate the need for vertical control surfaces. The purpose of this project is to support the design and testing of a morphing, crescent flying wing airframe which will be used to evaluate yaw control in an aircraft without vertical control surfaces. There are three main objectives of this project, which are to perform static and dynamic analysis on the crescent wing …


Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves Aug 2021

Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves

Doctoral Dissertations and Master's Theses

The primary objective of this work is to develop high-fidelity simulation model for jet noise control predictions and quantify the sound reduction when an external source frequency mode excitation is imposed on the jet flow. Whereas passive approaches using mixing devices, such as chevrons, have been shown to reduce low-frequency noise in jet engines, such approaches incur a performance penalty since they result in a reduced thrust. To avoid a performance penalty in reducing jet noise, the current work investigates a open-loop active noise control (ANC) system that utilizes a unsteady microjet actuator on the nozzle lip in the downstream …


A Reduced-Order Model Bi-Modal Excitation Of A Supersonic Planar Jet, Benjamin Malczewski Aug 2021

A Reduced-Order Model Bi-Modal Excitation Of A Supersonic Planar Jet, Benjamin Malczewski

Doctoral Dissertations and Master's Theses

This work analytically and numerically examines the effects of bi-modal excitation on a Mach 1.5 heated planar jet. Starting with the Navier-Stokes equations, triple decomposition is applied to the flow components. A reduced order model is derived, turning the Navier-Stokes partial differential equations into a set of coupled ordinary differential equations, relating the momentum thickness and amplitudes of a fundamental and subharmonic mode to the streamwise location along the jet. Computational fluid dynamics data from the minor plane of a Mach 1.5 heated rectangular jet is used to verify a hyperbolic tangent profile for the mean flow at various streamwise …


Monte-Carlo-Based Analysis Of Traffic Flow For Urban Air Mobility Vehicles, Sara Ghayouraneh Jul 2021

Monte-Carlo-Based Analysis Of Traffic Flow For Urban Air Mobility Vehicles, Sara Ghayouraneh

Graduate Theses and Dissertations

The research conducted in this dissertation is focused on developing a simulation tool that can predict the traffic flow patterns of the Urban Air Mobility vehicles to alleviate some of the challenges related to their traffic management. First, an introduction to the concept of Urban Air Mobility is given, the usage of Automatic Dependent Surveillance-Broadcast systems for Urban Air Mobility vehicles is suggested and dynamic addressing concept is introduced as an answer to a part of air traffic management and address scarcity challenge for Urban air Mobility vehicles. Next, in order to simulate the traffic flow patterns of the Urban …


Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph Jul 2021

Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph

Doctoral Dissertations and Master's Theses

We address the development of a dynamic-soaring capable unmanned aerial vehicle (UAV) optimized for long-duration flight with no on-board power consumption. The UAV’s aerodynamic properties are captured with the integration of variable fidelity aerodynamic analyses. In addition to this, a 6 degree-of-freedom flight simulation environment is designed to include the effects of atmospheric wind conditions. A simple flight control system aids in the development of the dynamic soaring maneuver. A modular design paradigm is adopted for the aircraft dynamics model, which makes it conducive to use the same environment to simulate other aircraft models. Multiple wind-shear models are synthesized to …


Modeling Of A Hybrid-Electric System And Design Of Control Laws For Hybrid-Electric Urban Air Mobility Power Plants, Sohail Bin Salam Lahaji Jul 2021

Modeling Of A Hybrid-Electric System And Design Of Control Laws For Hybrid-Electric Urban Air Mobility Power Plants, Sohail Bin Salam Lahaji

Doctoral Dissertations and Master's Theses

Advanced Air Mobility (AAM) is an emerging market and technology in the aerospace industry. These systems are being developed to overcome traffic congestion. The current designs make use of Distributed Electric Propulsion (DEP): either fully electric or hybrid electric. The hybrid engine system consists of two power sources: prime movers, such as turbine engines, and batteries. The hybrid systems offer higher range and endurance compared with the existing fully electric systems. Hybrid-electric power generation systems for AAM have different mission requirements when compared to systems used in automobiles. Therefore, there is a particular need to model hybrid-electric systems and the …


Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles Jun 2021

Passive Disposal Of Launch Vehicle Stages In Geostationary Transfer Orbits Leveraging Small Satellite Technologies, Marc Alexander Galles

Master's Theses

Once a satellite has completed its operational period, it must be removed responsibly in order to reduce the risk of impacting other missions. Geostationary Transfer Orbits (GTOs) offer unique challenges when considering disposal of spacecraft, as high eccentricity and orbital energy give rise to unique challenges for spacecraft designers. By leveraging small satellite research and integration techniques, a deployable drag sail module was analyzed that can shorten the expected orbit time of launch vehicle stages in GTO. A tool was developed to efficiently model spacecraft trajectories over long periods of time, which allowed for analysis of an object’s expected lifetime …


Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett Jun 2021

Simulation Of A Configurable Hybrid Aircraft, Brandon Bartlett

Master's Theses

As the demand for air transportation is projected to increase, the environmental impacts produced by air travel will also increase. In order to counter the environmental impacts while also meeting the demand for air travel, there are goals and research initiatives that aim to develop more efficient aircraft. An emerging technology that supports these goals is the application of hybrid propulsion to aircraft, but there is a challenge in effectively exploring the performance of hybrid aircraft due to the time and money required for safe flight testing and due to the diverse design space of hybrid architectures and components. Therefore, …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …


Improving The Performance Of An Ead Aircraft By Use Of A Retractable Electrode System, Michael Alexander Fredricks May 2021

Improving The Performance Of An Ead Aircraft By Use Of A Retractable Electrode System, Michael Alexander Fredricks

Mechanical Engineering Undergraduate Honors Theses

Electroaerodynamic (EAD) propulsion is a growing area of research for small, low powered aircraft. Recent tests of EAD aircraft have demonstrated low performance in unpowered, gliding flight. The purpose of this paper is to investigate the effect of a retractable electrode system on the flight performance of an EAD aircraft. An analysis of electrode drag contribution on the MIT ionic wind plane’s performance predicts a maximum lift to drag ratio of 22, with the addition of a retractable electrode system, for a similarly sized and modeled EAD aircraft. An experiment is developed using a prototype aircraft, launcher, and retraction system …


Design, Construction, And Flight Of A Remote-Controlled Aircraft For The 2020-21 Aiaa Dbf Competition, Jonathan A. Dixon, Caleb Weatherly, Satyam Mistry, Killian Samuels, Ethan Cerrito, Caleb Morgan, Sanghyeok Park, Sam Pankratz, Jamison Murphree May 2021

Design, Construction, And Flight Of A Remote-Controlled Aircraft For The 2020-21 Aiaa Dbf Competition, Jonathan A. Dixon, Caleb Weatherly, Satyam Mistry, Killian Samuels, Ethan Cerrito, Caleb Morgan, Sanghyeok Park, Sam Pankratz, Jamison Murphree

Chancellor’s Honors Program Projects

No abstract provided.


The Effects Of Remotely Piloted Aircraft Command And Control Latency During Within-Visual-Range Air-To-Air Combat, David Thirtyacre Mar 2021

The Effects Of Remotely Piloted Aircraft Command And Control Latency During Within-Visual-Range Air-To-Air Combat, David Thirtyacre

Doctoral Dissertations and Master's Theses

The type of military missions conducted by remotely piloted aircraft continues to expand into all facets of operations including air-to-air combat. While future within-visual-range air-to-air combat will be piloted by artificial intelligence, remotely piloted aircraft will likely first see combat. The purpose of this study was to quantify the effect of latency on one-versus-one, within-visual-range air-to-air combat success during both high-speed and low-speed engagements. The research employed a repeated-measures experimental design to test the various hypothesis associated with command and control latency. Participants experienced in air-to-air combat were subjected to various latency inputs during one-versus-one simulated combat using a virtual-reality …


A Reduced Order Model Of The Celestial Icosahedron As The Substructure For A Lighter Than Air Vehicle, Torin C. Quick Mar 2021

A Reduced Order Model Of The Celestial Icosahedron As The Substructure For A Lighter Than Air Vehicle, Torin C. Quick

Theses and Dissertations

A finite element approach was used to investigate a novel reduced order model to determine the minimum structure dimensionality to support vacuum for a VLTAV. This modeling technique represented the individual segments of the substructure as curved beams with clamped radially-resisted boundary conditions. The full structure was then modeled as a bare structure and structure with skin to validate the results of the reduced order model. The beam geometry for the material Ultem 9085 was determined through this process leading to the 3-D printing of the structure. It was then experimentally tested under uniaxial compression complimented with a FEA model.


Ram Air-Turbine Of Minimum Drag, Raymond Akagi Mar 2021

Ram Air-Turbine Of Minimum Drag, Raymond Akagi

Master's Theses

The primary motivation for this work was to predict the conditions that would yield minimum drag for a small Ram-Air Turbine used to provide a specified power requirement for a small flight test instrument called the Boundary Layer Data System. Actuator Disk Theory was used to provide an analytical model for this work.

Classic Actuator Disk Theory (CADT) or Froude’s Momentum Theory was initially established for quasi-one-dimensional flows and inviscid fluids to predict the power output, drag, and efficiency of energy-extracting devices as a function of wake and freestream velocities using the laws of Conservations of Mass, Momentum, and Energy. …


Development Of Multi-Scale Characterization Techniques For Stress Corrosion Cracking Of Aerospace Alloys, Nicholas Reed Jan 2021

Development Of Multi-Scale Characterization Techniques For Stress Corrosion Cracking Of Aerospace Alloys, Nicholas Reed

Electronic Theses and Dissertations, 2020-

Corrosion presents an inherent challenge in the safe and effective use of metallic aerospace structures for extended periods of time. Progress in the fundamental understanding of corrosion initiation and propagation under stress requires a multi-scale approach that leverages experiments to develop predictive models. Although there exists a large amount of research results tracking the corrosive processes of anodic dissolution and hydrogen embrittlement, the amount of available data and modeling of the micro-scale initiation of corrosion is sparse. This work leverages a suite of characterization techniques to systematically analyze an aerospace grade aluminum alloy AA7075-T6, providing important multi-scale data for correlation …


Dji Drone Modification, Sean Lacey, Seth Mancuso, Bryce Mckenzie Jan 2021

Dji Drone Modification, Sean Lacey, Seth Mancuso, Bryce Mckenzie

Williams Honors College, Honors Research Projects

For this project, we set out to create a lightweight carrying case that would be mounted to a DJI Phantom 3. This case is designed to transport small packages, such as medications, from a delivery vehicle to their final destination. Based on our maximum drone lifting capacity of 600 grams, our case, servomotor, and contents had to weigh less than or equal to that value. The coronavirus pandemic has led to an increase in contactless delivery options along with the push for immunocompromised people to avoid contact with people that may be sick. Our product would help transport necessary supplies …


Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson Jan 2021

Measurements Of Wind Turbine Wake Evolution And Trajectory During Morning Boundary Layer Transition And Under Wake Steering Conditions Via Unmanned Aerial Vehicles, Stewart Nelson

Theses and Dissertations--Mechanical Engineering

In July of 2019, a flight campaign was conducted using semi-autonomous Unmanned Aerial Vehicles (UAVs) at the Port Alma Kruger Energy wind farm in Ontario, Canada, to study various aspects of wind turbine wake evolution. Horizontal transects across the wakes were measured using modified fixed-wing aircraft fitted with a five-hole probe to measure the wind velocity vector. Reference boundary layer conditions were measured by an octocopter with an assortment of mounted sensors flying vertical profiles upstream of the turbines. Three experiments were conducted during the campaign, which consisted of a study on wake behavior during the morning boundary layer transition, …