Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aeronautical Vehicles

Selected Works

Selected Works

Aerospace

Articles 1 - 3 of 3

Full-Text Articles in Aerospace Engineering

The Next Step Beyond Identifying Field Variability: Integrating Unmanned Aerial Systems Into The Farm Management Workflow, Kevin A. Adkins, Christen C. Bailey, Aspen E. Taylor Apr 2018

The Next Step Beyond Identifying Field Variability: Integrating Unmanned Aerial Systems Into The Farm Management Workflow, Kevin A. Adkins, Christen C. Bailey, Aspen E. Taylor

Kevin A. Adkins, PhD

Precision agriculture strives to manage variations in the field in order to increase yield while adapting input factors to preserve resources and decrease production costs. Unmanned aerial systems (UAS) are advancing precision agriculture by allowing for nondestructive and convenient, as well as cost and time efficient mapping of spatial variation in fields with higher spatial resolution than previous methods. However, while there is much anticipation regarding the potential role for UAS in precision agriculture, their role still requires additional application-based testing. The objective of this work was to explore how growers best integrate the UAS product into their farm workflow. …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Jun 2015

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann M. Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, …


Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito Sep 2013

Towards Real-Time, On-Board, Hardware-Supported Sensor And Software Health Management For Unmanned Aerial Systems, Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J. Mengshoel, Timmy Mbaya, Corey Ippolito

Ole J Mengshoel

Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and …