Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Aerospace Engineering

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace Dec 2021

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace

Publications

The FAA requires airports operating under the Code of Federal Regulations Part 139 to conduct a wildlife hazard assessment (WHA) when some wildlife-strike events have occurred at or near the airport. The WHA should be conducted by a Qualified Airport Wildlife Biologist (QAWB) and must contain several elements, including the identification of the wildlife species observed and their numbers; local movements; daily and seasonal occurrences; and the identification and location of features on and near the airport that could attract wildlife. Habitats and land-use practices at and around the airport are key factors affecting wildlife species and the size of …


Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheri Marcham Oct 2021

Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheri Marcham

Publications

Small Unmanned Aerial Systems in Emergency Response

Current sUAS Uses

  • Search and rescue
  • Thermal imaging
  • Evaluating structural stability
  • Spread of wildfires
  • Storm damage


Robust Nonlinear Tracking Control For Unmanned Aircraft In The Presence Of Wake Vortex, Petr Kazarin, Vladimir Golubev, William Mackunis, Claudia Moreno Aug 2021

Robust Nonlinear Tracking Control For Unmanned Aircraft In The Presence Of Wake Vortex, Petr Kazarin, Vladimir Golubev, William Mackunis, Claudia Moreno

Publications

The flight trajectory of unmanned aerial vehicles (UAVs) can be significantly affected by external disturbances such as turbulence, upstream wake vortices, or wind gusts. These effects present challenges for UAV flight safety. Hence, addressing these challenges is of critical importance for the integration of unmanned aerial systems (UAS) into the National Airspace System (NAS), especially in terminal zones. This work presents a robust nonlinear control method that has been designed to achieve roll/yaw regulation in the presence of unmodeled external disturbances and system nonlinearities. The data from NASA-conducted airport experimental measurements as well as high-fidelity Large Eddy Simulations of the …


Unmanned Aircraft Systems For Archaeology Using Photogrammetry And Lidar In Southwestern United States, Imai Bates-Domingo, Alexandra Gates, Patrick Hunter, Blake Neal, Kyle Snowden, Destin Webster Aug 2021

Unmanned Aircraft Systems For Archaeology Using Photogrammetry And Lidar In Southwestern United States, Imai Bates-Domingo, Alexandra Gates, Patrick Hunter, Blake Neal, Kyle Snowden, Destin Webster

Study America

Researchers can use small unmanned aircraft systems (sUAS), also known as drones, to make observations of historical sites, help interpret locations, and make new discoveries that may not be visible to the naked eye. A student team from Embry-Riddle Aeronautical University gathered data for historical site documentation in New Mexico using the DJI Phantom 4 Pro V2, DJI Mavic Pro 2, DJI M210 and DJI M600, and senseFly eBee. Utilizing these drones, student analysts were able to take the data gathered and create georectified orthomosaic images and 3D virtual objects. At Tularosa Canyon, at a site known as the Creekside …


Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves Aug 2021

Active Control Of Coherent Structures In An Axisymmetric Jet, Michael Marques Goncalves

Doctoral Dissertations and Master's Theses

The primary objective of this work is to develop high-fidelity simulation model for jet noise control predictions and quantify the sound reduction when an external source frequency mode excitation is imposed on the jet flow. Whereas passive approaches using mixing devices, such as chevrons, have been shown to reduce low-frequency noise in jet engines, such approaches incur a performance penalty since they result in a reduced thrust. To avoid a performance penalty in reducing jet noise, the current work investigates a open-loop active noise control (ANC) system that utilizes a unsteady microjet actuator on the nozzle lip in the downstream …


A Reduced-Order Model Bi-Modal Excitation Of A Supersonic Planar Jet, Benjamin Malczewski Aug 2021

A Reduced-Order Model Bi-Modal Excitation Of A Supersonic Planar Jet, Benjamin Malczewski

Doctoral Dissertations and Master's Theses

This work analytically and numerically examines the effects of bi-modal excitation on a Mach 1.5 heated planar jet. Starting with the Navier-Stokes equations, triple decomposition is applied to the flow components. A reduced order model is derived, turning the Navier-Stokes partial differential equations into a set of coupled ordinary differential equations, relating the momentum thickness and amplitudes of a fundamental and subharmonic mode to the streamwise location along the jet. Computational fluid dynamics data from the minor plane of a Mach 1.5 heated rectangular jet is used to verify a hyperbolic tangent profile for the mean flow at various streamwise …


Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph Jul 2021

Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph

Doctoral Dissertations and Master's Theses

We address the development of a dynamic-soaring capable unmanned aerial vehicle (UAV) optimized for long-duration flight with no on-board power consumption. The UAV’s aerodynamic properties are captured with the integration of variable fidelity aerodynamic analyses. In addition to this, a 6 degree-of-freedom flight simulation environment is designed to include the effects of atmospheric wind conditions. A simple flight control system aids in the development of the dynamic soaring maneuver. A modular design paradigm is adopted for the aircraft dynamics model, which makes it conducive to use the same environment to simulate other aircraft models. Multiple wind-shear models are synthesized to …


Modeling Of A Hybrid-Electric System And Design Of Control Laws For Hybrid-Electric Urban Air Mobility Power Plants, Sohail Bin Salam Lahaji Jul 2021

Modeling Of A Hybrid-Electric System And Design Of Control Laws For Hybrid-Electric Urban Air Mobility Power Plants, Sohail Bin Salam Lahaji

Doctoral Dissertations and Master's Theses

Advanced Air Mobility (AAM) is an emerging market and technology in the aerospace industry. These systems are being developed to overcome traffic congestion. The current designs make use of Distributed Electric Propulsion (DEP): either fully electric or hybrid electric. The hybrid engine system consists of two power sources: prime movers, such as turbine engines, and batteries. The hybrid systems offer higher range and endurance compared with the existing fully electric systems. Hybrid-electric power generation systems for AAM have different mission requirements when compared to systems used in automobiles. Therefore, there is a particular need to model hybrid-electric systems and the …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …


The Effects Of Remotely Piloted Aircraft Command And Control Latency During Within-Visual-Range Air-To-Air Combat, David Thirtyacre Mar 2021

The Effects Of Remotely Piloted Aircraft Command And Control Latency During Within-Visual-Range Air-To-Air Combat, David Thirtyacre

Doctoral Dissertations and Master's Theses

The type of military missions conducted by remotely piloted aircraft continues to expand into all facets of operations including air-to-air combat. While future within-visual-range air-to-air combat will be piloted by artificial intelligence, remotely piloted aircraft will likely first see combat. The purpose of this study was to quantify the effect of latency on one-versus-one, within-visual-range air-to-air combat success during both high-speed and low-speed engagements. The research employed a repeated-measures experimental design to test the various hypothesis associated with command and control latency. Participants experienced in air-to-air combat were subjected to various latency inputs during one-versus-one simulated combat using a virtual-reality …


Can The Timeframe Of Reported Uas Sightings Help Regulators?, Spencer Erik Pitcher, Kelly A. Whealan-George Jan 2021

Can The Timeframe Of Reported Uas Sightings Help Regulators?, Spencer Erik Pitcher, Kelly A. Whealan-George

Beyond: Undergraduate Research Journal

Remotely controlled small aircraft, otherwise known as Unmanned Aircraft Systems (UAS) or drones have started to impact the United States National Airspace System by interfering with the safe flight of aircraft. As the UAS industry continues its expected growth into the future, lawmakers, as well as regulators at the Federal Aviation Administration (FAA) and the aviation community must be able to predict when there will be more UAS craft in the air that could cause an interruption to air traffic so that more resources can be allocated optimally to counter the threat of UAS craft. The purpose of this study …


Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheryl Lynn Marcham, Scott Burgess, Joseph Cerreta, Patti J. Clark, James P. Solti, Brandon Breault, Joshua G. Marcham Jan 2021

Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheryl Lynn Marcham, Scott Burgess, Joseph Cerreta, Patti J. Clark, James P. Solti, Brandon Breault, Joshua G. Marcham

Publications

Using a UAS-mounted sensor to allow for a rapid response to areas that may be difficult to reach or potentially dangerous to human health can increase the situational awareness of first responders of an aircraft crash site through the remote detection, identification, and quantification of airborne hazardous materials. The primary purpose of this research was to evaluate the remote sensing viability and application of integrating existing commercial-off-the-shelf (COTS) sensors with small unmanned aircraft system (UAS) technology to detect potentially hazardous airborne contaminants in emergency leak or spill response situations. By mounting the personal photoionization detector (PID) with volatile organic compound …


Comparative Study On The Prediction Of Aerodynamic Characteristics Of Mini - Unmanned Aerial Vehicle With Turbulence Models, Somashekar V, Immanuel Selwyn Raj A Jan 2021

Comparative Study On The Prediction Of Aerodynamic Characteristics Of Mini - Unmanned Aerial Vehicle With Turbulence Models, Somashekar V, Immanuel Selwyn Raj A

International Journal of Aviation, Aeronautics, and Aerospace

When dealing with CFD simulations the turbulent nature is seen on most of the engineering flows and these flows need to be solved. Reliable and applicable CFD outputs can be obtained from the accurate modelling of the turbulence as it is one of the most vital elements of CFD modelling. The RANS equations are extensively employed to analyse the complex flows over aircraft and for this purpose, a turbulence model is needed for turbulent flow analyses. Compatible turbulence must be chosen for the exact predictions of aircraft aerodynamic characteristics. In this report, numerical analyses of Mini-UAV are done to compare …


Small Unmanned Aircraft Systems Acoustic Analysis For Noninvasive Marine Mammal Response: An Exploratory Field Study, David Thirtyacre, Gennifer Brookshire, Sarah Callan, Brittany Arvizu, Patrick Sherman Jan 2021

Small Unmanned Aircraft Systems Acoustic Analysis For Noninvasive Marine Mammal Response: An Exploratory Field Study, David Thirtyacre, Gennifer Brookshire, Sarah Callan, Brittany Arvizu, Patrick Sherman

International Journal of Aviation, Aeronautics, and Aerospace

As in countless other fields of human endeavor, small unmanned aircraft systems (sUAS) have the potential to benefit pinniped (Pinnipedia; e.g., Phocidae [seals], Otariidae [sea lions], and Odobenidae [walruses]) response efforts. The employment of sUAS could give responders a close-up look at animals in distress in order to determine their condition as well as develop a response strategy. However, unlike other subjects that are regularly inspected by sUAS (e.g., croplands and civil infrastructure) pinnipeds may respond to the distinctive sound generated by small, multirotor sUAS. This reaction may include retreating into the water en masse, which could put …


Digitalization Of Educational And Methodological Support For The Training Of Aviation Dispatchers, Zair Ziyaevich Shamsiev Jan 2021

Digitalization Of Educational And Methodological Support For The Training Of Aviation Dispatchers, Zair Ziyaevich Shamsiev

International Journal of Aviation, Aeronautics, and Aerospace

The tasks of improving the educational process of training civil aviation dispatchers on the basis of the development and implementation of digital teaching aids are considered. Legislative and regulatory documents are accepted as an object of digitalization. The end result of the research is expressed in the provision of the educational process with a special electronic educational complex, which has the functions of providing the necessary information and conducting practical exercises to deepen, consolidate and control knowledge in the field of aviation documents.


Aircraft Exhaust Gas Temperature Value Mining With Rough Set Method, Mustagime Tülin Yıldırım Asst. Prof., Mehtap Taşcı Jan 2021

Aircraft Exhaust Gas Temperature Value Mining With Rough Set Method, Mustagime Tülin Yıldırım Asst. Prof., Mehtap Taşcı

International Journal of Aviation, Aeronautics, and Aerospace

Aircrafts are one of the most important means of transportation today. For aircrafts to be able to serve safely, their maintenance must be done in a timely and complete manner. In addition to regular maintenance, it may appear suddenly; there is also irregular maintenance performed in cases such as lightning strikes, bird strikes, and hard landings. Engine failures and maintenance has great importance in aircraft maintenance. Using the data recorded during the flight by flight data recorder, the engine health condition is monitored and the necessary maintenance procedures are carried out. In this study, the exhaust gas temperature was estimated …


Internet Of Things 36-Rotor Multicopter For Ionizing Radiation Surveying, Svetoslav Zabunov, Garo Mardirossian, Rositsa Miteva, Todor Kunchev Jan 2021

Internet Of Things 36-Rotor Multicopter For Ionizing Radiation Surveying, Svetoslav Zabunov, Garo Mardirossian, Rositsa Miteva, Todor Kunchev

International Journal of Aviation, Aeronautics, and Aerospace

This paper presents an Internet of things 36-rotor unmanned aerial vehicle suitable for radiological surveying of buildings and facilities. The design of the 36-rotor multicopter platform is disclosed. The aircraft is used as a testbed for a lightweight gamma/beta/neutron ionizing radiation sensor closely coupled with the autopilot of the multirotor aircraft. A prototype of the drone and sensor was developed and initial tests were conducted. Test results are presented with data from measuring different radiation sources. The proposed novel design is compared to existing work and advantages to the latter were established.


Albatross And Falcon Inspired Bionic Uav: An Aerodynamic Analysis, Bilji C. Mathew, Sagar K. Sahu, Prantik Dutta, Rushi Savale, Muruga Lal Jeyan Jv Dr. Jan 2021

Albatross And Falcon Inspired Bionic Uav: An Aerodynamic Analysis, Bilji C. Mathew, Sagar K. Sahu, Prantik Dutta, Rushi Savale, Muruga Lal Jeyan Jv Dr.

International Journal of Aviation, Aeronautics, and Aerospace

The drone industry yearns for enhanced aerodynamic performance. In order to achieve this feat, researchers and engineers are trying to mimic the natural flyers due to their aerodynamic optimality. One such flyer, the Albatross is an inspiration for many marine drones due to its planform and aerodynamic efficiency. The wing of the plan form is designed and simulated to study its properties. The Bell-Shaped Lift Distribution is incorporated for higher efficiency and elimination of the total downwash produced in case of an Elliptical Lift Distribution. A blended wing body inspired by the Falcon is used for smoother airflow interactions. Furthermore, …


Exploring The Impact Of Composite Material Fires And Associated Response Protocol On The Material Analysis During An Aircraft Accident Investigation, Flavio A. C. Mendonca, Natalie Zimmermann, Peng Hao Wang, Julius Keller Jan 2021

Exploring The Impact Of Composite Material Fires And Associated Response Protocol On The Material Analysis During An Aircraft Accident Investigation, Flavio A. C. Mendonca, Natalie Zimmermann, Peng Hao Wang, Julius Keller

Publications

Metals, beginning in the 1930s, have been frequently used as the material of choice for aircraft construction (Hallion, 1978; Jakab, 1999). Common metals used in the aviation industry range from alloyed and heat-treated aluminum to titanium, magnesium, and superalloys, the latter used in specialized applications (Hallion, 1978; Mouritz, 2012). Nevertheless, a shift in aircraft construction – specifically in terms of the materials used – began in the 1970s, as composite materials were introduced into commercial aircraft (Mouritz, 2012). Among others, the increased use of composited materials was – and still is – propelled by the ability to manufacture comparative lightweight …