Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Aerospace Engineering

Effects Of Pressure Side Film Cooling Hole Placement And Condition On Surface Heat Transfer Characteristics Of A Transonic Turbine Blade Tip, Hallie Collopy, Phillip M. Ligrani, Hongzhou Xu, Michael Fox Dec 2022

Effects Of Pressure Side Film Cooling Hole Placement And Condition On Surface Heat Transfer Characteristics Of A Transonic Turbine Blade Tip, Hallie Collopy, Phillip M. Ligrani, Hongzhou Xu, Michael Fox

PRC-Affiliated Research

The effects of film cooling hole placement location along the upper pressure side of a transonic squealer are considered. The thermal performance of four different film cooling configurations; B1, B2, B3 and B4, are considered using the University of Alabama in Huntsville's SS/TS/WT (supersonic/transonic/wind tunnel) experimental facility and a simulated turbine blade row using a linear cascade. Surface-varying results are provided for both the squealer blade tip surface, and for the upper pressure side of the squealer blade. These results are given for blowing ratios ranging from 0.42 to 3.20 in the form of spatially-resolved and spatially-averaged adiabatic film cooling …


Machine Learning In Aerodynamic Shape Optimization, Jichao Li, Xiaosong Du, Joaquim R.R.A. Martins Oct 2022

Machine Learning In Aerodynamic Shape Optimization, Jichao Li, Xiaosong Du, Joaquim R.R.A. Martins

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, …


Comprehensive Review Of Heat Transfer Correlations Of Supercritical Co2 In Straight Tubes Near The Critical Point: A Historical Perspective, Nicholas C. Lopes, Yang Chao, Vinusha Dasarla, Neil P. Sullivan, Mark Ricklick, Sandra Boetcher Aug 2022

Comprehensive Review Of Heat Transfer Correlations Of Supercritical Co2 In Straight Tubes Near The Critical Point: A Historical Perspective, Nicholas C. Lopes, Yang Chao, Vinusha Dasarla, Neil P. Sullivan, Mark Ricklick, Sandra Boetcher

Publications

An exhaustive review was undertaken to assemble all available correlations for supercritical CO2 in straight, round tubes of any orientation with special attention paid to how the wildly varying fluid properties near the critical point are handled. The assemblage of correlations, and subsequent discussion, is presented from a historical perspective, starting from pioneering work on the topic in the 1950s to the modern day. Despite the growing sophistication of sCO2 heat transfer correlations, modern correlations are still only generally applicable over a relatively small range of operating conditions, and there has not been a substantial increase in predictive capabilities. Recently, …


Flow And Heat Transfer In Swirl Tubes — A Review, Florian Seibold, Phillip M. Ligrani, Bernhard Weigand May 2022

Flow And Heat Transfer In Swirl Tubes — A Review, Florian Seibold, Phillip M. Ligrani, Bernhard Weigand

PRC-Affiliated Research

The development of modern gas turbines for aircraft propulsion and power generation demands ever-increasing efficiency, which can be achieved by rising the turbine inlet temperature. Therefore, turbine components and especially the leading edge of turbine blades are exposed to particular high thermal loads with temperatures that are well above the melting point of the material. As a result, efficient cooling techniques are essential. Swirling flows in cyclone cooling systems are a promising technique for internal turbine blade leading edge cooling since they promise high heat transfer rates in combination with relatively uniform heat transfer distributions. The current paper presents a …


Experimental Study Of Turbulent Flow Heat Transfer And Pressure Loss Over Surfaces With Dense Micro-Depth Dimples Under Viscous Sublayer, Peng Zhang, Yu Rao, Phillip M. Ligrani Feb 2022

Experimental Study Of Turbulent Flow Heat Transfer And Pressure Loss Over Surfaces With Dense Micro-Depth Dimples Under Viscous Sublayer, Peng Zhang, Yu Rao, Phillip M. Ligrani

PRC-Affiliated Research

Presented are experimentally-measured heat transfer and pressure loss characteristics for dimpled surfaces, placed along one surface of a channel, with different ratios of dimple depth to channel height δ/H, and for Reynolds numbers ranging from 10,000 to 70,000. With the same relative dimple spacing to dimple print diameter, and the same ratio of dimple depth to dimple print diameter of δ/d = 0.20, experimental results for arrays of spherical indentation dimples with micro depths of δ = 0.6 and 1.0 mm (δ/H = 0.03 and 0.05) are compared with thermal characteristics for arrays of larger dimples with δ = 4.0 …


Flow Structure And Surface Heat Transfer From Numerical Predictions For A Double Wall Effusion Plate With Impingement Jet Array Cooling, Hwabhin Kwon, Phillip M. Ligrani, Sneha Reddy Vanga, Heesung Park Feb 2022

Flow Structure And Surface Heat Transfer From Numerical Predictions For A Double Wall Effusion Plate With Impingement Jet Array Cooling, Hwabhin Kwon, Phillip M. Ligrani, Sneha Reddy Vanga, Heesung Park

PRC-Affiliated Research

To provide additional understanding of double wall cooling arrangements, especially local distributions of flow properties which are responsible for hot-side surface and cold-side surface heat transfer variations, investigated are numerically-simulated distributions of turbulent flow structural characteristics. Also considered are numerically-simulated surface heat transfer characteristics, including comparisons with experimentally-measured distributions. The numerical results are obtained using the ANSYS FLUENT Version 19.1 numerical code, with a k-ω SST turbulence model. The present arrangement includes a full-coverage effusion cooling plate, with coolant initially supplied by an impingement jet array. Considered are the effects of effusion blowing ratio, impingement jet Reynolds number, and streamwise …


Characterization Of Effective Diffusion Within Viscoelastic Fluids With Elastic Instabilities, Valerie Hietsch, Phillip Ligrani, Mengying Su Jan 2022

Characterization Of Effective Diffusion Within Viscoelastic Fluids With Elastic Instabilities, Valerie Hietsch, Phillip Ligrani, Mengying Su

PRC-Affiliated Research

We considered effective diffusion, characterized by magnitudes of effective diffusion coefficients, in order to quantify mass transport due to the onset and development of elastic instabilities. Effective diffusion coefficient magnitudes were determined using different analytic approaches, as they were applied to tracked visualizations of fluorescein dye front variations, as circumferential advection was imposed upon a flow environment produced using a rotating Couette flow arrangement. Effective diffusion coefficient results were provided for a range of flow shear rates, which were produced using different Couette flow rotation speeds and two different flow environment fluid depths. To visualize the flow behavior within the …


Design And Development Of Active Flow Effectors, Konstantinos Kanistras Jan 2022

Design And Development Of Active Flow Effectors, Konstantinos Kanistras

Summer Community of Scholars (RCEU and HCR) Project Proposals

No abstract provided.


Design And Development Of An Online Wind Tunnel, Konstantinos Kanistras Jan 2022

Design And Development Of An Online Wind Tunnel, Konstantinos Kanistras

Summer Community of Scholars (RCEU and HCR) Project Proposals

No abstract provided.


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark Jan 2022

On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current …


Experiences During The Implementation Of Two Different Project-Based Learning Assignments In A Fluid Mechanics Course., Orlando Ayala, Kristie Gutierrez, Francisco Cima, Julia Noginova, Min Jung Lee, Stacie Ringleb, Pilar Pazos, Krishnanand Kaipa, Jennifer Kidd Jan 2022

Experiences During The Implementation Of Two Different Project-Based Learning Assignments In A Fluid Mechanics Course., Orlando Ayala, Kristie Gutierrez, Francisco Cima, Julia Noginova, Min Jung Lee, Stacie Ringleb, Pilar Pazos, Krishnanand Kaipa, Jennifer Kidd

Engineering Technology Faculty Publications

There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in …


Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu Jan 2022

Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu

Mathematics & Statistics Faculty Publications

Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and Q-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the Q-tensor theory in dynamic configurations.


Experimental Study Of Wall Bounded Harbor Seal Whisker Inspired Pin Geometries, Anish Prasad, Mark Ricklick Jan 2022

Experimental Study Of Wall Bounded Harbor Seal Whisker Inspired Pin Geometries, Anish Prasad, Mark Ricklick

Publications

Conventional cylindrical/elliptical pins are one of the most widely used geometries in convection cooling systems and are used in the internal cooling of gas turbine blades and other applications, as they promote better heat transfer at the expense of large pressure losses and unsteadiness in the flow. The need to reduce pressure drop and maintain the heat transfer rates are a pressing requirement for a variety of industries to improve their cooling efficiency. One such prominent field of research is conducted in optimizing the design of pin geometries. In this study, a harbor seal whisker inspired geometry is being studied …